

Paul Scherrer Institut Transportation fuels: System analysis for SNG

Serge Biollaz presented by Martin Rüegsegger New Zealand April 2010 IEA Bioenergy Task 33

Possible contribution of Bioenergy

	Scenario of European I	EREC's members AEBIOM SURFFISH RÉDIGIA ASSOCIÉTES	EGEC ©EPIA					
	RES Type	2007	2020	2030	2050	EREF		
	Wind	8.9	41	72	133.5	* * European	ESTELA	
	Hydro ¹	27.9	33	34.2	38.5	European Solar Thermal Industry Federation	CUBIA - Ocean energy	
=	PV	0.5	15.5	48	116	EUREC	EWEA	
	Bioenergy	77.8	175.5	226	359.1 ◀			_
	Geothermal (Electricity and H&C)	1.4	9.7	35.5	188			
	Solar Thermal	0.9	12	70	122			
•	CSP	0.1	3.7	12.1	33.1			
	Ocean	-	0.4	1.5	14			
	TOTAL RES (Mtoe)	118	290.8	499.3	1,004.2			
	Final Energy Consumption				Bioene	rgy	2007 205	0
	Eurostat	1,194.9			Total	Mtoe	78 359	9
	NEP Moderate Price High Price		1,185 1,140		Electricity Heat	y % %	11.3 11.9 78.6 59.	
	2030 Moderate Price High Price			1,175 1,124	Biofuel Total	% %	10.1 28.4 100.0 100.0	
	2050 Scenario 2050 Aggressive Efficiency				1,050 735*			
	Total Share of RES (%)		24.5 – 25.5%	42.4% - 44.4%	96% - 137%	Published	l in April 2010	

Future transport fuels

		Roa	d/passei	igers	R	oad/freig	ght	Rail	Water		Air	
		short	med	long	short	med	long		inland	short-sea shipping	maritime	
Electric	BEV											
	HFC											
	Grid											
Biofuels	Biofuels (liquid)											
Synthetic	fuels											
	CNG											
Methane	CBG											
	LNG											
LPG												

Electric: Battery Electric Vehicle (BEV), Hydrogen Fuel Cell (HFC)

Methane: Compressed Natural Gas (CNG), Compressed Biogas (CBG), Liquefied Natural Gas (LNG)

LPG: Liquefied Petrol Gas

http://ec.europa.eu/transport/urban/vehicles/directive/doc/2011 01 25 future transport fuels report.pdf

Contribution of Biofuels

Estimate of European Renewable Energy Council (EREC), April 2010

T	ransp	oort Fuel Demand [Mtoe]	2007	2020	2030	2050	
-	Biofue	ls production	7.88	34	44.5	102	
1.7	Total Transport Fuel Demand						
I	Eurostat		377				
1	NEP	Moderate Price High Price		390 374			
2	2030	Moderate Price High Price			390 369		
2	2050	Scenario Aggressive Efficiency			148.6* 104**		
24	Total S	share of RES-T	2%	8.7% - 9%	11.4% - 12%	68.6% - 98%	

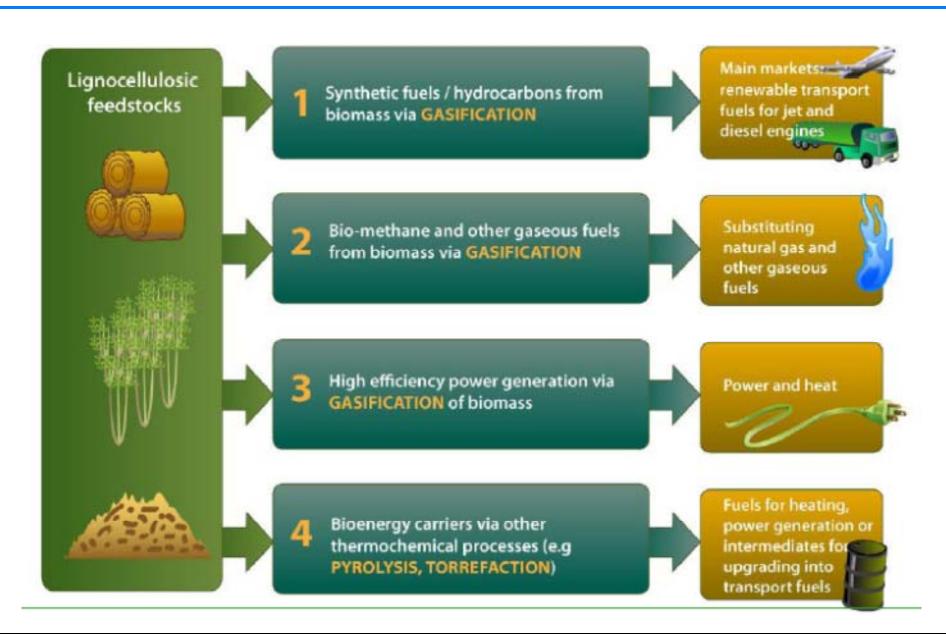
Source: EREC

* the strong decrease of fuel demand in the transport sector is due to the shift of transport fuel usage towards electrification.

** setting an energy efficiency target of about 30% against the "2050 Scenario"

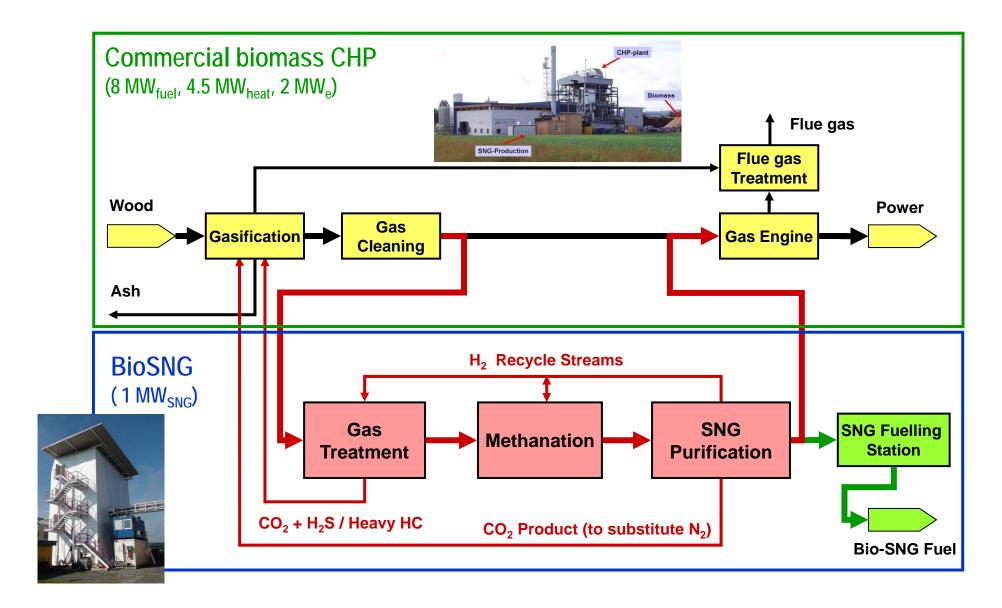
Motivation and Objectives of EIBI

Motivation

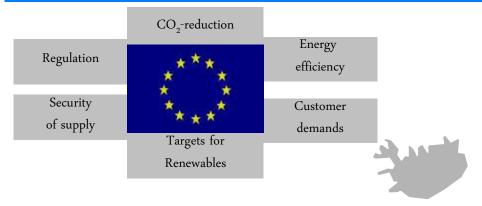

 Funding latest stages of industrial development of innovative advanced bioenergy value chains is a considerable challenge: new tool and approach such as European Industrial Initiative (EII) are urgently needed.

Objectives

- Enabling commercial availability of advanced bioenergy at large scale by 2020, including advanced biofuels covering up to 4
 % of EU transportation energy needs by 2020
- Strengthening EU world technology leadership for renewable transport fuels, in particular for diesel and jet engines, serving the fastest growing area of transport fuels in the world.



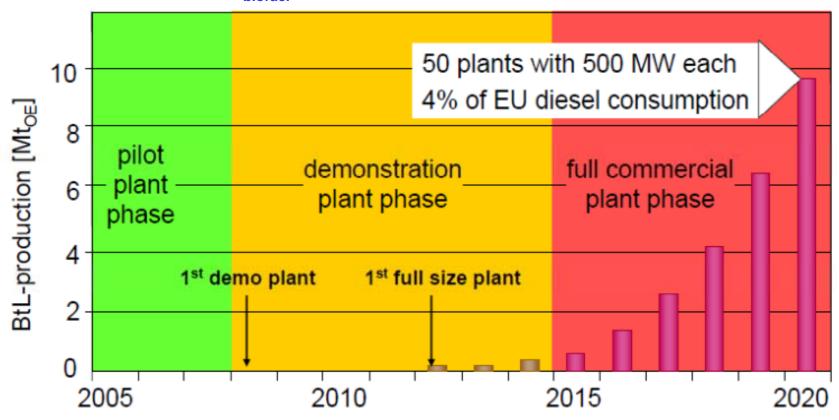
EIBI thermo-chemical value chains



bioSNG demo plant Güssing

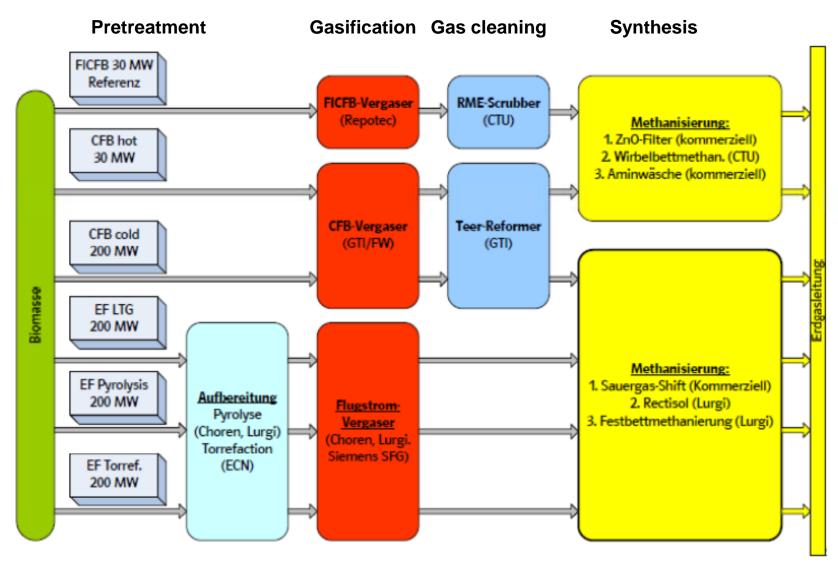
A sustainable gas system

- ~10% renewable methane in 2030
- corresponds to 55 billion m³/year
 methane (550 TWh/year = 70 GW_{SNG})
- investment volume of + 60 billion €



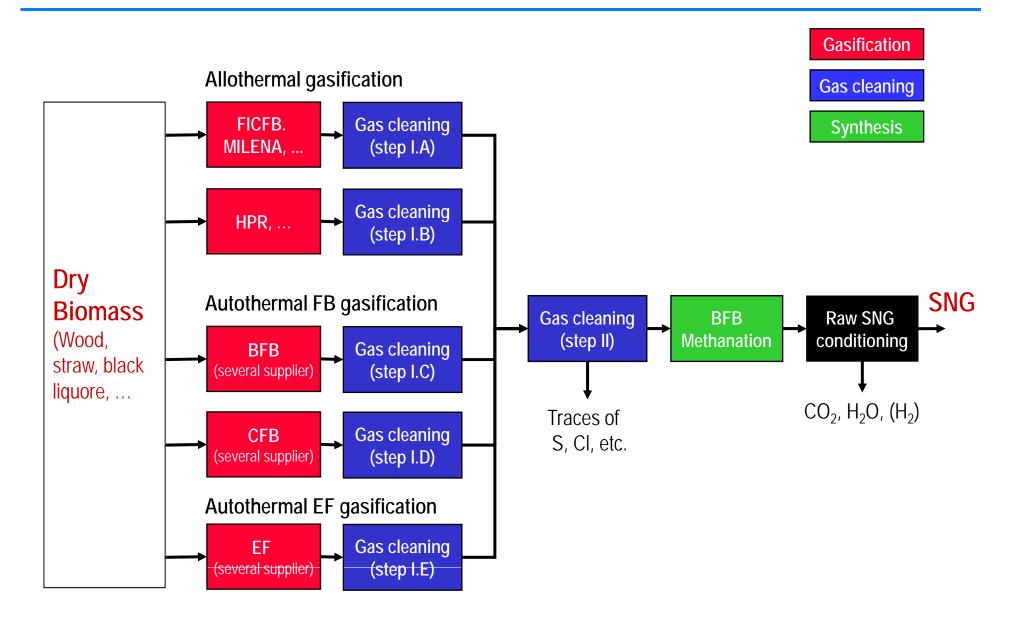
Example of suggested marked implementation

EIBI target: Advanced biofuels covering up to 4 % of EU transportation energy needs by 2020


Example: 500 MW or 1 Mt biomass input (= Choren Σ –Plant), 200,000 t/a BtL-fuel = 0.1% EU-diesel demand

→ under optimal conditions, 50 BtL-plants cover 4 % of EC-diesel demand in 2020!

VW, Sept. 2008


Evaluated options by E.ON for SNG

Technical options biomass-to-SNG

Ambitious targets in EU

		2007	2020	2030	2050
Biofuels production	Mtoe	7.88	34	44.5	102
	PJ	330	1424	1863	4271
	TWh	92	395	518	1186
	GW	11.5	49.4	64.7	148.3
	h/a	8000	8000	8000	8000
	% advancen biofuel		4	4	4
	Mtoe advanced biofu	13.6	17.8	40.8	
	GW advanced biofue	19.8	25.9	59.3	
Biomethane	% share biomethane		10		
	TWh			550	
	GW			70	
	Investment Billion €			60	
	billion m³ SNG/year			55	

- There is room for all good technologies
- Supply chain of biomass?
- Supply chain for technology vendors?