

NREL Thermochemical Research Program and Facilities

Task 33 Meeting 12April, 2011

Richard Bain

National Renewable Energy Laboratory

Innovation for Our Energy Future

U.S. Primary Energy Consumption in 2009

U.S. Electricity Generation in 2009

Historical Biopower Capacity and Generation

Historical U.S. Biodiesel Production

U.S. Biomass Resource Potential Scenarios

U. S. Biomass Supply Curve Scenarios

NREL BIOFUELS PLATFORM: GOALS

Near-term Goal:	Demonstrate a Modeled, Cost Competitive, Biomass Derived Ethanol Price by 2012
Process Target:	Integrated bioethanol technology demonstrated at pilot scale (1 ton per day)
Cost Target:	Data from integrated pilot operation combined with process design model & cost estimate validates an ~\$1.50/gal MESP
R&D Plan:	Well-defined R&D plan in place with multiple paths to success for both biochemical and thermochemical conversion

Longer Term Goal:	Demonstrate Other Biofuels Technologies That Can Contribute to Larger Volume EISA Targets
Process Target:	Development of alternate feedstock processes Continue to pursue technology advances targeting cost reduction Progress alternative fuel processes ("Energy Dense/Infrastructure Compatible")
Cost Target:	Multiple cost-competitive biomass to fuel options with the potential to displace gasoline, diesel and/or jet fuel
• R&D Plan:	Develop core research plan that complements advanced biofuels and algae consortia

NREL's THERMOCHEMICAL PLATFORM

Major Research Tasks, NREL (FY2011)

1. Gasification

Fundamental and applied studies for biomass gasification

2. Pyrolysis

Upgrading of pyrolysis oils Catalytic fast pyrolysis

3. SynGas Cleanup

Tar reforming catalyst development, catalytic gasification, high temperature H_2S sorbents

4. Fuels Synthesis (mixed alcohols)

Catalyst testing and validation

- 5. Process Integration TC PDU (20 kg/h)
- 6. Process Analysis and Modeling

10

Fuels from Syngas

Hydrocarbon fungibility will be a key to success

National Renewable Energy Laboratory

Innovation for Our Energy Future

THERMOCHEMICAL PLATFORM: STATE OF TECHNOLOGY

	2005	2007	2008	2009	2010	2011	2012
Minimum Ethanol Selling Price (\$/gal)	\$3.47	\$3.57	\$2.40	\$2.26	\$1.90	\$1.70	\$1.57
Feedstock Contribution (\$/gal)	\$1.58	\$1.58	\$1.05	\$0.95	\$0.80	\$0.73	\$0.71
Conversion Contribution (\$/gal)	\$1.89	\$1.89	\$1.35	\$1.31	\$1.10	\$0.97	\$0.86
Ethanol Yield (Gallon/dry ton)	43	43	61	62	68	71	71
Mixed Alcohol Yield (Gallon/dry ton)	50	50	71	72	80	84	84
Feedstock							
Feedstock Cost (\$/dry ton)	\$67.55	\$67.55	\$63.50	\$58.20	\$54.20	\$51.80	\$50.70
Syngas Generation							
Syngas Yield (lb/lb dry feed)	0.82	0.82	0.82	0.82	0.82	0.82	0.82
CH ₄ Concentration in raw syngas(mol %-dry basis)	15.1	15.1	15.1	15.1	15.1	15.1	15.1
Syngas Cleanup and Conditioning							
Tar Reformer – CH ₄ conversion (%)	20	20	50	56	80	80	80
Tar Reformer – Benzene conversion (%)	70	80	90	90	99	99	99
Tar Reformer – Total Tar conversion (%)	95	97	97	97	99.9	99.9	99.9
Tar Reformer – Exit CH_4 concentration (mol %)	10.2	10.2	3.8	3.1	1.1	1.3	1.3
Catalytic Fuel Synthesis							
Compression for fuel synthesis (psia)	2000	2000	2000	2000	1500	1500	1500
Single pass CO conversion (%)	40	40	40	40	40	50	50
Overall CO conversion (%)	40	40	40	40	40	50	50
CO Selectivity to alcohols - CO2 free basis (%)	80	80	80	80	80	80	80
Total Alcohol Productivity (g/kg/hr)	300	300	300	300	450	600	600
Major Focus 2005-2010 (Single Pass)			Majo	or Focus 2	2009-2012		

THERMOCHEMICAL CONVERSION: GASIFICATION

Biomass via synthesis gas to fuels

- 1. Deconstruct biomass all the way to light gases (CO & H_2)
- 2. Convert syngas to liquid fuels

GASIFIER TYPES FOR FUEL SYNTHESIS

Indirect gasification is one of the lowest cost options

Syngas Composition

Typical gas compositions of three indirect gasification processes (wood as fuel)

Gas component, dry	y basis	FICFB (Güssing)	SilvaGas	MILENA	(ECN)
Hydrogen	vol%	30-45	20-22	15-20	
Carbon monoxide	vol%	20-30	41-44	40-43	
Carbon dioxide	vol%	15-25	11-14	10-12	
Methane	vol%	8-12	12-16	15-17	
C2+ hydrocarbons	vol%	1-3	4-6	5-6	
Benzene	vol%	1	1		
Nitrogen	vol%	1-3	2-10	1-4	
Ammonia	ppmV	500-1000	500-1000		
H2S	ppmV	50-120	40-100		Contaminants
Tar	g/mn3	0.5-1.5	40	40	
Particles	g/mn3	10-20	~		

Stergaršek et al. Workshop proceedings Production and Purification of Fuel from Waste and Biomass, October 2004.

Biomass Derived Syngas Cleaning

Biomass Syngas Cleaning Strategies

Feedstock Impact on Syngas Composition

•Tars calculated by difference in units of g tar/g dry, ashfree feed

• Results are color-coded by feedstock type (herbaceous, distillers dry grains, and woody)

Slightly less tars produced from woody feedstocks

FLUID BED TAR REFORMING

Challenge: Continuously reform tars and methane in the presence of H_2S and other contaminants

MAS

Synthesis

Ni-K-Mg/Al₂O₃ fluidizable catalyst

Deactivates in H₂S

Fluid Bed

Catalytic

Tar Reforming

Regeneration

Gasification

- Loses CH₄ reforming
- Maintains tar, benzene conversion

Indirect, two-stage steam gasification 8" FBR, 700-850° C Crushed oak pellets (15 kg/h) 1:1 steam-to-biomass Steam reformer 14" FBR 850-900° C 60 kg catalyst GHSV ~5000 h⁻¹

FLUIDIZED S TOLERANT REFORMING CATALYST

Syngas Cleanup and Conditioning Chemistry

Reaction chemistry

Reforming:	CxHyOz + H2O(g)	H2 + xCO
Water gas shift:	H2O + CO	 CO2 + H2
Gasification:	C + H2O(g)	 COx + H2

Process conditions

- 800-950°C
- Steam
- Tars –
- Fluid catalyst bed
- S, CI species
- Syngas (CH4, CO, H2, CO2)

Single composite catalyst facilitating complex and simultaneous reactions

Tar Reforming Catalyst Challenges

- 1) High activity
 - Short contact times
- 2) Sulfur tolerance
- 3) Efficient regeneration
- 4) Attrition resistance
- 5) Technical Targets
 - Total tars conversion > 99%
 - Benzene conversion > 90%
 - Methane conversion > 90%

Reforming Catalyst Development

Catalyst Design and Evaluation: C₂H₄ Reforming

Catalyst	wt% NiO	wt% MgO	wt% K2O	Support	Ni/Mg	Steam Ref	<mark>+ 20</mark> ppm H ₂ S	After regen
Cat. 32a	6.1	2.4	3.9	AI2O3	2	97	13	98
Cat. 34a	3			AI2O3		30	20	18
Cat. 34b	6			AI2O3		19	19	48
Cat. 34c	9			AI2O3		52	70	95
Cat. 34d	3	5.5	0.08	AI2O3	0.5	37	37	37
Cat. 34e	6	1.8	0.17	AI2O3	3.3	96	43	100
Cat. 34f	6	3.6	0.17	AI2O3	1.7	91	37	69
Cat. 34g	3	1.8	0.08	AI2O3	1.7	80	30	87
Cat. 34h	3	3.6	0.08	AI2O3	0.8	82	21	82
Cat. 34i	3	5.5	0.08	AI2O3	0.5	78	16	76
Cat. 34j	6	1.8	0.16	AI2O3	3.3	94	55	30
Cat. 34k	6	3.6	0.16	AI2O3	1.7	86	58	95
Cat. 34I	6	5.5	0.16	AI2O3	1.1	88	38	92
Cat. 34m	9	1.8	0.24	AI2O3	5	98	73	100
Cat. 34n	9	3.6	0.24	AI2O3	2.5	95	49	NA
Cat. 34o	9	5.5	0.24	AI2O3	1.6	93	53	100
Cat. 35a	3	3	0.09	AI2O32	1	79	12	79
Cat. 35b	3	3	0.08	Zr-Al2O3	1	68	20	71
Cat. 35c	1.5	1.5	0.04	Zr-Ceria	1	61	8	60
Cat. 35d	3	3	0.08	Ce-Zr- Al2O3	1	82	16	82
National Renewable Energy Laboratory						nerav Future		

Catalyst and Sorbent Development Approach

- Evaluation with raw syngas is key to determining catalyst and sorbent performance
- Lab developed and emerging industrial catalysts rapidly screened with decision point after initial screening
- Improvements incorporated into process model
- Best process demonstrated at pilot scale in 2012

Reforming Catalyst Regeneration

Challenge:

Biomass syngas contains contaminants (H2S, HCI) that deactivate methane reforming catalysts

General Approach 1:

- Crack tars/reform methane with contaminants present
 - Frequent/continuous regeneration of Ni-based reforming catalysts using optimized regeneration process:

Cycle Number

Achieved tar reforming efficiency of \geq 80% methane, 99% benzene, and 99% heavy tars through improved catalyst composition and regeneration processes

National Renewable Energy Laboratory

Innovation for Our Energy Future

Understanding Catalyst Deactivation and Regeneration

a) XRD patterns and (b) H2 TPR profiles of post-reaction catalysts tested in:

- (i) fixed-bed reactor, bench scale conditions with model syngas
- (ii) pilot-plant fluidized bed reactor with real syngas
- (iii) pilot-plant recirculating/regenerating reactor using model syngas

Catalyst used with model syngas has more free Ni available for further reforming

What in raw syngas causes this? - current and future work

National Renewable Energy Laboratory

Effect of Catalyst Regeneration on Sulfur (S-XANES)

Direct observation of sulfur species after reaction and regeneration steps

Transformation of sulfides to sulfates (not fully removed from surface)

Guided protocol for improved regeneration (time, temperature, environment)

2010 E MS: Use of EXAFS and XANES to investigate the fate of nickel and biomass inorganic contaminants on catalysts

> Stanford Synchrotron Radiation Lightsource

Effect of treatment on sulfur chemistry provides understanding and improvement of regeneration processes

National Renewable Energy Laboratory

Innovation for Our Energy Future

Reforming Catalyst Improvement

Fundamental Challenge:

Biomass syngas contains contaminants (H2S, HCI) that deactivate methane reforming catalysts

National Renewable Energy Laboratory

Catalytic Gasification

Total Tar Tertiary Tar

Fundamental Challenge:

 Biomass syngas contains contaminants (H2S, HCl) that deactivate tar cracking/methane reforming catalysts
 0,3

 General Approach 2:
 0,2

 Reduce contaminants before catalytic reforming
 0,15

 Develop in bed gasification catalysts to reduce/eliminate
 0,05

 0
 0

tars as they form using:

Ni impregnated olivine gasification catalyst prepared in house

Total tar in the gasification product gas measured by MBMS (sum 50-450 amu)

10% less tar forms at 650°C with catalyst than at 800°C without catalyst

70% less tar forms at 800°C with catalyst than without

Less tar reduces load on the reforming catalyst

Catalytic Gasification

Total Tar Tertiary Tar

Fundamental Challenge:

 Biomass syngas contains contaminants (H2S, HCl) that deactivate tar cracking/methane reforming catalysts
 0,3

 General Approach 2:
 0,2

 Reduce contaminants before catalytic reforming
 0,15

 Develop in bed gasification catalysts to reduce/eliminate
 0,05

 0
 0

tars as they form using:

Ni impregnated olivine gasification catalyst prepared in house

Total tar in the gasification product gas measured by MBMS (sum 50-450 amu)

10% less tar forms at 650°C with catalyst than at 800°C without catalyst

70% less tar forms at 800°C with catalyst than without

Less tar reduces load on the reforming catalyst

SYNGAS CLEANUP: CONTINUOUS REFORMING/REGENERATION

FUEL SYNTHESIS: MAS CATALYST STRATEGY

Construction and operation of advanced test reactor systems

- Built-in capability for a variety of catalysts (vision beyond 2012)
- Capability to feed syngas directly from the TCPDU
- Allows around-the clock unmanned operation for faster throughput/catalyst lifetime studies

Improved MAS Catalysts in support of 2012 cost target

- Test improvements to Dow catalyst and continue to optimize conditions through collaborative research under Dow CRADA
- Work with PNNL to test rhodium-based catalyst with TCPDU derived syngas and optimize run parameters
- Targeting higher ethanol selectivity and ethanol productivity

mixed gas storage and delivery

Sulfide Catalyst Improvements

Innovation for Our Energy Future

THERMOCHEMICAL CONVERSION: PYROLYSIS

Biomass via pyrolysis oils to fuels

- 3. Partially deconstruct biomass to liquids
- 4. Refine liquids to fuels

CREATING REFINERY READY PYROLYSIS OIL

Production and Processing of Crude Pyrolysis Oil

- Catalytic pyrolysis
- Mild hydrotreating for deoxygenation and TAN reduction
- Evaluate compatibility with refinery feedstocks and intermediate streams
 - composition, properties, miscibility, stability, distillability
 - testing of fluids in micro-units that mimic refinery unit operations

NREL and PNNL are working together and with other partners to facilitate commercialization of pyrolysis for transportation fuels.

Biomass Catalyst Characterization Laboratory Comprehensive Solids/Liquids Analysis

BCCL Instruments	Measures
TGA/DSC/FTIR	Thermal behavior/gas analysis
TGA	Thermal behavior
TPD/MS	Thermal desorption/gas analysis
Porosimeter/pycnometer	Porosity/distribution
Surface area analyzer	Surface area
ICP, XRF	Elemental analysis
Particle Sizer	Particle size/distribution
LECO CHNS, TGA	C, H, N, S, proximate analysis
2D GCMC	Chemical composition (oils)
GC/FID	Fuel composition
XRD	Crystal structure
UV photometer	Gas analysis
Py probe GCMS	Catalytic pyrolysis
FTIR	Gas analysis
SEM/EDS	Surface analysis/composition
Microactivity test systems	Catalyst performance

TEM/EDS analysis catalyst particle

Innovation for Our Energy Future

NBC's Thermochemical User Facility (TCUF)

Simulates thermochemical conversion processes

- Gasification
- Pyrolysis
- Combustion (de-emphasized)

Fully automated 0.5 ton/day biomass conversion

Large scale tar cracking & reforming reactor

Close-coupled biomass conversion with testing of downstream processes

- 0.1 kg/h to 20 kg/h
 downstream reactors
- upgrading/conversion research

National Renewable Energy Laboratory

BIOREFINERY PROCESS ANALYSIS

Design Report

- Mass and energy balances using Aspen Plus
- Discounted cash flow rate of return analysis (DCFROR)
- Calculate minimum product selling price to meet specified IRR (10%)
- Sensitivity Analysis
- Process improvements evaluated yearly

NATIONAL ADVANCED BIOFUELS CONSORTIUM

Biofuels for Advancing America

NABC National Advanced Biofuels Consortium

Project Objective – Develop cost-effective technologies that supplement petroleum-derived fuels with advanced "drop-in" biofuels that are compatible with today's transportation infrastructure and are produced in a sustainable manner.

ARRA Funded: - 3 year effort

- DOE Funding \$33.8M
- Cost Share <u>\$12.5M</u> Total \$46.3M

Consortium Leads

National Renewable Energy Laboratory Pacific Northwest National Laboratory

Consortium Partners

Albemarle Corporation Amyris Biotechnologies Argonne National Laboratory BP Products North America Inc. Catchlight Energy, LLC Colorado School of Mines Iowa State University Los Alamos National Laboratory Pall Corporation RTI International Tesoro Companies Inc. University of California, Davis UOP, LLC Virent Energy Systems Washington State University

NABC: INFRASTRUCTURE COMPATIBILITY STRATEGY

Major DOE Biofuels Project Locations

MANAGNG THE TRANSITION IN SCOPE

* NREL Leadership Area

Innovation for Our Energy Future