

SYNOVA

A short route to produce virgin plastic from plastic waste

> IEA Task 33 2 December 2021 Bram van der Drift

If you like high-value hydrocarbons, choose 700-800°C

SYNOVA'S SOLUTION MEDIUM TEMPERATURE = DIRECT CHEMICALS

At 700-800°C, hetero-atoms mostly end up in small molecules (CO, CO2, H2S, NH3, HCI, ...)

700-800°C CREATES FREEDOM in FEEDSTOCK

Plastics waste	Biogenic material	Multi-materials	Water	Inert material
PE, PP, PS, PET, PC, PA, PLA, … (PVC limited)	paper, cotton, food residues, grass,	foil/cardboard, paper/plastic, cotton/PET,	up to 30% moisture	sand, metal, glass,

PROCESS

SYNOVA'S UNIT IN DIFFERENT PROCESSES

Name	Main Molecules	Main Market	Main Drivers
Olefins	Ethylene, Propylene,	Chemical industry,	Circularity,
	Butadiene, Benzene	Refineries	CO2
BTX	Benzene, Toluene,	Chemical industry,	Circularity,
	Xylenes	Refineries	CO2
RNG	Methane	Gas industry, Refineries	CO2

SYNOVA/T.EN'S SOLUTION REPLACING THE CRACKER FURNACE

GAS FROM SYNOVA PROCESS IS SIMILAR TO GAS FROM NAPHTHA STEAM CRACKER

* Example feedstock as tested in PDU: 59% plastic mass, 29% biomass, 11% ash, 1% water

PERFORMANCE

HIGH CO₂ REDUCTION

- Report by independent party: CE Delft
- 2.5 kg CO₂ / kg HVC (High Value Chemicals)
- Note: report includes numbers with landfill reference for waste

LOW COSTS

Cheaper than virgin plastics (from non-renewable feedstock)

HIGH YIELD

- 65% Plastic-to-HVC (High Value Chemicals)
- Biomass in the contaminated waste provides additional chemicals
- No chemical detour: direct chemicals

CHEAP and AVAILABLE FEEDSTOCK

Relatively relaxed feedstock preparation (waste processing): little plastic mass loss

SYNOVA

12

Cheap

BTX

BTX PRODUCTION

- Complete conversion of olefins to aromatics
- Technology and zeolite catalyst from Koch Technology Solutions
- BTX yield as high as 60% (Plastic-to-BTX)
- Tailgas consists of mainly methane, ethane, propane, hydrogen

SYNOVA's TECHNOLOGIES

MILENA CRACKER/GASIFICATION

- MILENA technology based on FCC technology coupled fluidized beds
- Heat transfer via circulating sand, no catalyst
- Operating at 700-800°C
- Coke and PAH's from downstream OLGA are burned to provide the energy for the cracking/gasification
- No external fuels required
- >7000h accumulated in Process Design Units (PDU's) and initial trial with ~1 tonne/h plant

OLGA GAS CLEANING

- OLGA technology based on Coke Oven Gas cleaning: gas/liquid contactors and Electrostatic Precipitator (ESP)
- Removes 99.9% of Poly Aromatic Hydrocarbons (tars) and particles
- >7000h accumulated in Process Design Units (PDU's) and initial trials with several ~1 tonne/h plants

CONCLUDING REMARKS

- Synova offers affordable next generation plastic recycling with high circularity and high CO₂ reduction
- The temperature is:
 - High enough to break down to a few high-value molecules irrespective of the type of plastics and biomass content
 - Low enough to keep the molecules in play
- The feedstock can handle biogenic material:
 - Increases the output of high-value molecules
 - Improves the CO₂ reduction
 - Avoids expensive upstream separation
 - Keeps the losses low and circularity high
 - Keeps the feedstock cheap and highly available

REMEMBER THIS

Not too cold... Not too hot... But just right!

SYNOVA

www.synovatech.com