

THE VALUE OF FLEXIBLE POWER AND BIOMASS-TO-X SYSTEMS BASED ON GASIFICATION OF SECOND GENERATION BIOMASS

Matteo C. Romano Politecnico di Milano, Department of Energy Group of Energy Conversion Systems (GECoS)

Workshop on *Gasification - a key technology in the energy transition and for the circular economy* 2 December 2021

FLEDGED PROJECT (2016-2020)

The *FLEDGED* project has delivered two technologies *validated in industrially relevant environment* (TRL5) for the production of *Bio-Dimethyl Ether (DME) from biomass gasification*:

- Process intensification
- Process flexibility

FLEDGED PROJECT: SORPTION-ENHANCED GASIFICATION

* * * * * * *

In *Sorption-Enhanced Gasifier*, CaO-rich sorbent circulates between a gasifier-carbonator and a combustor-calciner to produce:

- > a N₂-free syngas with no need of air separation unit (indirect gasification)
- \succ a syngas with tailored module "M" thanks to in-situ CO₂ separation by reaction: CaO + CO₂ \rightarrow CaCO₃

FLEDGED PROJECT: SORPTION-ENHANCED DME SYNTHESIS (SEDMES)

Sorption-Enhanced DME Synthesis is a direct DME synthesis process using sorbent for in-situ water sorption:

- > high per-pass DME yield, thanks to the reduced thermodynamic limitation of methanol dehydration reaction
- > insensitivity on the CO/CO₂ ratio in the feed (if module M \approx 2)

FLEDGED PROJECT: FLEXIBILITY

- Fuel flexibility: SEG exploits the fuel flexibility typical of fluidized beds and has been tested with woody biomass, agricultural waste, municipal solid waste as feedstocks.
- Operational flexibility: by changing the solids circulation in the SEG unit, CO₂ separation can be reduced, allowing the integration with intermittent H₂ from electrolysis for energy storage via power-to-DME
- Bio-CCS: with an O₂-blown SEG combustor, concentrated CO₂ stream is produced, suitable for geologic storage, delivering a negative emission system

FLEDGED PROJECT

Facilities for demonstration at TRL5

The second

Flexible SEG process demonstrated in the 200 kW dual fluidized bed facility at IFK, University of Stuttgart.

SEDMES process demonstrated in multi column PSA rig at TNO

6

Matteo Romano

7

FLEXIBLE POWER & BIOMASS TO MEOH PLANT

Flexibly operated sorption-enhanced gasifier:

increased solids circulation \rightarrow increased gasification temperature \rightarrow lower CO₂ uptake by CaO sorbent \rightarrow lower M

Matteo Romano

Poluzzi et al., 2022. *Flexible Power & Biomass-to-Methanol plants: design optimization and economic viability of the electrolysis integration*. Fuel, 310, 122113.

PERFORMANCE

- Two reactor design assessed (i. Enhanced reactor design: 7580 tubes, ii. Baseline reactor design: 4700 tubes) in the two operating modes
- Biomass input: 100 MW_{LHV}

	Enhanced reactor design		Baseline reactor design	
	Baseline operation	Enhanced operation	Baseline operation	Enhanced operation
Carbon efficiency (CE), %	40.3	64.4	39.3	59.7
Methanol output, MW _{LHV}	62.0	99.0 (+60%)	60.4	91.8 (+52%)
Net electric power output, MW _{el}	-2.9	-67.2	2.0	-58.0
Power-to-MeOH efficiency (η_{P2F}) ,%	-	57.5	-	52.3%

- Much higher carbon efficiency in "enhanced operation" (+50-60%).
- Enhanced reactor design achieves significantly higher performance (especially in enhanced operation), with higher capital costs.

Matteo Romano

Poluzzi et al., 2022. *Flexible Power & Biomass-to-Methanol plants: design optimization and economic viability of the electrolysis integration*. Fuel, 310, 122113.

10

MeOH synthesis unit can be designed and operated avoiding hot spots in the reactor working with different feed flow rates.

Multi-period economic optimization of the heat recovery steam cycle parameters.

Matteo Romano

Poluzzi et al., 2022. Flexible Power & Biomass-to-Methanol plants: design optimization and economic viability of the electrolysis integration. Fuel, 310, 122113.

ECONOMIC ANALYSIS

- Calculation of the cost of the e-fuel (i.e. marginal cost of the additional MeOH produced)
- Key assumptions:
 - Electrolysis capacity factor: 80%
 - Average electricity price (from DK 2019): 34.3 €/MWh in enhanced operation, 55.3 €/MWh in baseline operation
 - Electrolysis system cost: 700 €/kWe

Electricity Fixed OPEX

FLEXIBLE POWER & BIOMASS TO MEOH PLANT

Coupling with the electricity price curve:

The number of electrolysis operating hours depends on the "willingness to pay": electricity price vs. product selling price.

Matteo Romano

Poluzzi et al., 2022. Flexible Power & Biomass-to-Methanol plants: design optimization and economic viability of the electrolysis integration. Fuel, 310, 122113.

FLEXIBLE POWER & BIOMASS TO MEOH PLANT

Coupling with the electricity price curve

- With the "current" (DK, 2019) electricity price curve, the economic benefits deriving from a flexible plant are relatively small.
- Flexible plants become competitive in energy systems with low average electricity prices, but non-negligible periods of high electricity price.

Matteo Romano

Poluzzi et al., 2022. Flexible Power & Biomass-to-Methanol plants: design optimization and economic viability of the electrolysis integration. Fuel, 310, 122113.

14

Key takeaways

- Due to the high cost of hydrogen from electrolysis in comparison with the cost of oversizing the MeOH synthesis unit, enhanced reactor design is to be preferred.
- Competitive cost of the produced e-MeOH can only be achieved with high electrolyzer capacity factors → change of common paradigm:
 - *e-fuel plants should use low-cost surplus electricity*
 - *e-fuel plants should not operate during high electricity price periods*
- A prerequisite to make PBtM plants economically competitive is that the bio-MeOH/e-MeOH selling price must be sufficiently high to determine high "willingness to pay" price for the electric energy.

Other key messages (1/2)

 Different gasification technologies need different design and different operating strategies to manage operational flexibility.

e.g.: <u>O₂-blown direct gasifier</u>: WGS and CO₂ separation (to be bypassed in enhanced operation) + MeOH purification (with MeOH recycle in baseline operation)

Poluzzi et al.. *Flexible Power & Biomass-to-Methanol plants with different gasification technologies*. Front. Energy Res. - Bioenergy and Biofuels. Under review.

Other key messages (2/2)

In future carbon-constrained world, the best bioenergy conversion pathway (electricity, H₂, MeOH, etc...) with/without CCS will depend on the relative value/price of the products and of CO₂, that vary over time with different time scales.

Matteo Romano

Systems in the Decarbonization Challenge: a Critical Review. Current Sustainable / Renewable Energy Reports (2021).

Relevant publications

- Poluzzi A., Guandalini G., Guffanti S., Elsido C., Moioli S., Huttenhuis P., Rexwinkel G., Martelli E., Groppi G., Romano M.C., 2022. *Flexible Power & Biomass-to-Methanol plants: design optimization and economic viability of the electrolysis integration*. Fuel, 310, 122113.
- Poluzzi A., Guandalini G., Guffanti S., Elsido C., Moioli S., Huttenhuis P., Rexwinkel G., Palonen J., Martelli E., Groppi G., Romano M.C.. *Flexible Power & Biomass-to-Methanol plants with different gasification technologies*. Frontiers in Energy Research - Bioenergy and Biofuels. Under re-review.
- Poluzzi A., Guandalini G., d'Amore F., Romano M.C., 2021. *The Potential of Power and Biomass-to-X Systems in the Decarbonization Challenge: a Critical Review*. Current Sustainable / Renewable Energy Reports (2021).
- Poluzzi A., Guandalini G., Romano M.C., 2020. Potential carbon efficiency" as a new index to track the performance of biofuels production processes. Biomass and Bioenergy, 142, 105618.

www.polimi.it

<u>Shank you</u>

Contact: matteo.romano@polimi.it

FLEDGED project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600

Group of Energy

COnversion Systems

Matteo Romano

