

IEA Bioenergy

Carbon balances of BECCS via gasification pathways

Alberto Almena-Ruiz, Patricia Thornley, Katie Chong, Mirjam Röder

- Most of the scenarios modelled by the IPCC limiting global warming to 1.5°C consider BECCS.
- UK Energy White Paper: BECCS is expected to contribute to reach net-zero by 2050

<u>Case study</u>: hydrogen production via gasification with pre-combustion CO₂ capture using waste wood, e.g. white wood pellets from sawmill residues.

Description of the case study

Decentralised BECCS deployment

- Low initial investment per facility
- Use of sustainable regional resources

- Local energy supply
- CO₂ utilisation market

EBRI gasification pilot plant

Technology	Biomass catalytic gasification				
	Fluidised bed gasifier				
	Tar removal				
	Pre combustion CC (methanol absorption)				
	Membrane for H ₂ purification				
Scale	1 MW (300 kg/h biomass)				
Energy vector	Hydrogen: fuel cell purity				
Captured CO ₂ fate	Storage				

Methodology

Objective. Quantify:

Net-emissions. Is there CDR potential?

Biomass-to-hydrogen yield of the process. Is it feasible?

Biomass requirements. Is there enough?

A- Process modelling and simulation

B- Life cycle assessment of the supply chain

Process modelling (ASPEN)

Almena et al., 2022. Biomass and Bioenergy (Under review)

Aston University

Supply chain emissions balance

	kg CO ₂ e MWh ⁻¹
CO ₂ biological sequestration	-1,277
Emissions – Biomass supply chain	123
Emissions – Bioenergy conversion	275
Emissions – CCS Infrastructure	20
Net emissions	-859

Different operational alternatives

Operating modes assessed in the study: 1.0 0.9 Energy production (MW)) 0.8 **Scenario H**₂ (benchmark): **O**₂ as gasification agent. 0.7 0.6 Scenario 1: Air as gasification agent. 0.5 0.4 Scenario 2: Lower (70%) Rectisol efficiency. 0.3 0.2 Scenarios 3: Alternative power supplies. 0.1 (i) Hydrogen CHP. 0.0 (ii) Power to gas: UK grid. (iii) Power to gas: **100% renewable** (wind power). Hydrogen production Net emissions (kg CO₂e MWh⁻¹) When using biomass as feedstock, **mass-specific** emissions factor could be advisable to compare. ♦ Net CO₂ removal

Reaching UK targets for BECCS

Operating modes assessed in the study:	
Scenario H ₂ (benchmark): O ₂ as gasification agent.	
Scenario 1 : Air as gasification agent.	
Scenario 2: Lower (70%) Rectisol efficiency.	Meet
 Scenarios 3: Alternative power supplies. (i) Hydrogen CHP. (ii) Power to gas: UK grid. (iii) Power to gas: 100% renewable (wind power). 	zero (20 1
UK's annual negative emissions target for	Usino

- UK's annual negative emissions target for BECCS: 20 to 70 Mt CO₂ by 2050*
- UK's low-carbon hydrogen production goal: 5 GW by 2030*
- * UK Government (2020), The Energy White Paper

Aston University

Least convenien					Most convenient		
	Case	В	1	2	3 (i)	3 (ii)	3 (iii)
Meeting UK net- zero targets (20 Mt CO2 p.a.)	Number of facilities required to meet UK net-zero targets	7,903	7,946	11,067	6,771	14,188	8,026
	H2 from BECCS (GW)	3.3	1.6	5.8	0.9	10.6	6
	H2 national requirement (GW)	5	5	5	5	5	5
	Biomass requirement (Mt)	16.6	16.7	23.3	14.2	29.8	16.9
Using the available wood in the UK	Biomass available in the UK (Mt)	10.9	10.9	10.9	10.9	10.9	10.9
	Max. number facilities	4,156	4,156	4,156	4,156	4,156	4,156
	Joint capacity (GW)	1.7	0.8	2.2	0.6	3.1	3.1
	% H2 demand covered	35	17	44	11	62	62
	Total Net emissions (Mt CO ₂ p.a.)	-10.5	-10.5	-7.5	-12.2	-5.9	-10.4

- **BECCS** can deliver **net-negative emissions** and **supply low-carbon hydrogen** simultaneously.
- There is currently in the UK biomass available to start delivering net-negative emissions while contributing to energy supply. Yet no BECCS facilities are built.
- Using all the UK wood production to supply BECCS is not enough to meet CDR and low carbon hydrogen supply annual targets.
- Decentralised BECCS deployment could represent a quicker solution for net-negative emissions providing flexibility on the use of technology, enabling regional biomass supply and local energy provision, involving low risk for investors and generating commercial experience on BECCS performance to help developing a supplementary large scale deployment.
- Different operation strategies for the same process, result in different CDR performance. Policy frameworks could enhance the operator to run the process aiming at the highest CDR potential.
- Since sustainable biomass resources are not unlimited, trade-offs between energy production and CDR score must be accounted when promoting those policies. Consider the mass-specific metric when biomass is involved.

EBR Energy & Bioproducts Research Institute

Thank you for your attention

Alberto Almena-Ruiz, Research Fellow, EBRI a.almena@aston.ac.uk

Mirjam Roeder, Senior Research Fellow, EBRI m.roeder@aston.ac.uk

Patricia Thornley, Director of EBRI p.thornley@aston.ac.uk

Visit us at https://www.aston.ac.uk/research/eps/ebri

