

Synergies in Gas Sampling Research Bioenergy Task 32 and Task 33

Thomas Nussbaumer Simon Roth **Gabriel Barroso** Peter Zotter

Bioenergy Research Group, Horw Lucerne University of Applied Sciences and Arts, Horw

IEA Bioenergy Task 33 Workshop Horw 26. October 2016

1

T. Nussbaumer: Biomass combustion lab

- S. Roth, G. Barroso: Pyrolysis gas sampling 2
- P. Zotter, <u>T. Nussbaumer</u>: Cytotoxicity tests 3

Targets

- 1. increase efficiency for biomass heat and power
- 2. increase fuel flexibility
- 3. reduce the impact on ambient air by:
 - 1. Particulate Matter **PM**₁₀ caused
 - by primary PM: primary organic aerosol (POA), BC, fly ash
 - NMVOC as precursors for **secondary** organic aerosol (SOA)
 - 2. NO_X

HOCHSCHULE LUZERN

Combustion Devices

Log wood stoves (5–15 kW)
 Conventional type

Start-up: Ignition from the top

Combustion Devices

- Log wood stoves (5–15 kW)
 - Conventional type
 - Two-stage combustion type

HOCHSCHULE LUZERN

Combustion Devices

- Log wood stoves (5–15 kW)
 - Conventional type
 - Two-stage combustion type
- Log wood boilers (15–30 kW)
 - Two-stage combustion type
 - Integration of heat storage tank

Liebi LNC

HOCHSCHULE LUZERN

5

Combustion Devices

- Log wood stoves (5–15 kW)
 - Conventional type
 - Two-stage combustion type
- Log wood boilers (15–30 kW)
 - Two-stage combustion type
 - Integration of heat storage tank
- Pellet boilers (15 –30 kW)

HOCHSCHULE LUZERN

Combustion Devices

- Log wood stoves (5–15 kW)
 - Conventional type
 - Two-stage combustion type
- Log wood boilers (15–30 kW)
 - Two-stage combustion type
 - Integration of heat storage tank
- Pellet boilers (15 –30 kW)
- Moving grate boilers (150 kW)
 - multi-sector grate
 - flue gas recirculation

7

Combustion Devices

- Log wood stoves (5–15 kW)
 - Conventional type
 - Two-stage combustion type
- Log wood boilers (15–30 kW)
 - Two-stage combustion type
 - Integration of heat storage tank
- Pellet boilers (15 –30 kW)
- Moving grate boilers (150 kW)
 - multi-sector grate
 - flue gas recirculation
- Electrostatic precipitator (ESP)
 - lab-scale for PM investigation
 - commercial for grate boiler

9

HOCHSCHULE LUZERN

Fluid Dynamics Measurements

Particle Image Velocimetry (PIV)

1 <u>T. Nussbaumer</u>: Biomass combustion lab

- 3 P. Zotter, <u>T. Nussbaumer</u>: Cytotoxicity tests

HOCHSCHULE LUZERN

Gas sampling and analysis in fuel bed ('pyrolysis gas') and flue gas

Motivation

- 1. Understanding the processes in the fuel bed
- 2. Pyrolysis gas: Validation of the 1D-Fuel-Bed-Model (FBM)
- 3. Flue gas: Validation of CFD model for gas phase reactions from fuel bed to stack

HOCHSCHULE LUZERN

	Pyrolysi	s Gas	Flue Gas		
Parameter	Measurement	Modeling	Measurement	Modeling	
T	Type K 01200°C	+	Type K 01200°C	+	
O ₂	Paramag. 025 %	+	Paramag. 025 %	+	
H ₂	TCP 025 %	+	-	+	
CO ₂	NDIR 025 %	+		+	
со	NDIR 030 %	+	NDIR 02500 ppm NDIR 05 %	+	
CH ₄	NDIR 05 %	+	(VOC - NMVOC)	+	
VOC	FID 010 %		FID 010 %		
NMVOC	(VOC – CH ₄)	"Tar" = C_6H_6	FID 010 %	"Tar" = C_6H_6	
H₂O	Cap. 050 %	+	-	+	
NH ₃		+	1	+	
HCN	1 C	+	÷	+	
NO		+	NDIR 02500 ppm	+	
PM mass		-	Filter Sampling		
PM number/size -			SMPS 20700 nm OAS 0.320 µm		

Gas sampling and analysis

Pyrolysis gas sampling and analysis

HOCHSCHULE LUZERN

Pyrolysis gas sampling and analysis

Pyrolysis gas sampling and analysis

LUZERN

Pyrolysis gas sampling and analysis

Practical experiences and challenges

- Filter clogging at 180°C due to condensation
- Position of sampling uncertain

1D Fuel Bed Model

Concept of the walking column model: A fuel column is observed during the walk over the moving grate - Lagrange formulation*.

*Martinez-Garcia, J. and T. Nussbaumer. Combustion Science and Technology, 2015. 187(8): p. 1208-1228. HOCHSCHULE LUZERN

1D Fuel Bed Model

Table: Chemistry of Fuel Bed Model - Solid Phase

Process				Global Reaction	
Drying	Wood _{wet}	÷	$Wood_{Dry} + H_2O(g)$	$H_2O(I) \rightarrow H_2O(g)$	Eq. 1
			. Volatiles ₁	$CH_{1,4}O_{0,7}N_{0.0035}$ → 0.34 CH_4 + 0.62 CO +0.02 H_2 + 0.04 CO_2 + a NH_3 +b HCN + c·NO + d N_2	Eq. 2
Pyrolysis	Wood _{Dry} (CH _{1.4} O _{0.7} N _{0.0035})		Tar + Volatiles ₂	$CH_{1,4}O_{0,7}N_{0.0035}$ → 0.13 C_6H_6 + 0.05 H_2 + 0.22 CO_2 + 0.26 H_2O + a NH_3 +b HCN + c NO + d N_2	Eq. 3
			Char + Volatiles ₃	$CH_{1,4}O_{0,7}N_{0,0035}$ →0.76 C(s) + 0.08 CH_4 + 0.16 H_2 + 0.16 CO_2 + 0.38 H_2O + a NH_3 +b HCN + c NO + d N_2	Eq. 4
Char Combustion	$C(s) + \Theta^{-1} O_2$	→	CO, CO ₂ , HCN, NO, N ₂	C + Θ^{-1} O2 → 2(1 - Θ^{-1})CO + (2 / Θ^{-1} - 1)CO ₂ + a NH3 + b HCN + c NO + d N ₂ ; Θ = f(T)	Eq. 5
[1] Corresponds to a Massfraction of 0.2% N in the Wood HOCHSCH					

LUZERN

[1] Corresponds to a Massfraction of 0.2% N in the Wood

Validation 1D-EFBM with Experiments

Results

Conclusions - Further Steps

- 1. On-line detection of gas species (CO, H_2 , CH_4 , H_2O , VOC) from gasification section in a boiler is established
- 2. Data can be used for model validation
- 3. Compared to the measurements, the model predicts the wood gas flows out of the bed sharper. Explanations:

 In the 1D-FBM only an upright velocity component out of the bed is simulated, while mixing along the bed is neglected.

- Currently, the fuel particles are assumed as thermally thin, which is not accurate for practical fuel particles (e.g. > 10 mm)

HOCHSCHULE LUZERN

Synergies to Gasification

- 1. Comparison of model approaches and data for validation
- 2. Exchange of experience on sampling:
 - avoid clogging
 - increase positioning and accuracy
- 3. Interest on additional species:
 - "tar": indicators, other species than "NMVOC" ?
 - N-species for NO_X formation: NO, HCN, NH_3 , ...

- 1 <u>T. Nussbaumer</u>: Biomass combustion lab
- 2 S. Roth, G. Barroso: Pyrolysis gas sampling

3 P. Zotter, <u>T. Nussbaumer</u>: Cytotoxicity tests

HOCHSCHULE LUZERN

Experimental Setup for flue gas sampling

Sampling in flue gas (after combustion)

- Impinger fillings:
 - Cell growth medium
 - Sterile water
- 2 parallel sampling lines:
 - Filter upstream of impingers
 → COC only

→ COC plus solid PM

- No filter upstream of impingers
- 29

Analysis

- 1. TOC
- Cell viability human lung cells (H187)
 24 h exposure

Results – Cell Viability of samples with COC

Cytotoxicity based on flue gas volume:

- Differences of more than factor 100
- Cytotoxicity decreases from highest to lowest NMVOC [Zotter et al. 2016]

31

Synergies to Gasification

- 1. Comparison of toxicity of flue gas:
 - a) combustion
 - influence of combustion type
 - b) gasification and combustion for heat
 - gasification and IC engine application

Acknowledments

- Swiss Federal Office of Energy
- Federal Office for the Environment
- Swiss National Science Foundation
- Commission for Technology and Innovation

International Energy Agency IEA Bioenergy Task 32