

BIOENERGY GROUP

Chemical and Environmental Engineering Department

Opportunities of Hybridization of CSP Plants by Biomass Conversion

Prof. Alberto Gómez Barea (agomezbarea@us.es)

Fluidized Bed Conversion of Biomass and Waste

(IEA FBC and IEA Bioenergy Task 33)

24-25 October 2017. Skive (Denmark)

Chemical and Environmental Engineering Department

Contents

- Introduction to CSP
- 2. Concept of Hybridization of CSP with Biomass
- 3. Hybridization strategies
- 4. Commercial experience
- 5. Comparative analysis: Hybrid vs Standalone CSP
- 6. Biomass conversión options: combustion vs gasification
- 7. Hybrid options based on fluidized bed tecnologies

Concentrated Solar Thermal Power (CSP) Plant

CSP Technologies

Parabolic Trough ($C \approx 80$, $T \approx 400 \, ^{\circ}C$)

Linear Fresnel Reflector ($C \approx 50$, $T \approx 300 - 500 \, ^{\circ}C$)

Parabolic Dish $(C \approx 2500, T \approx 800 \, ^{\circ}C)$

Power Tower ($C \approx 600$, $T \approx 10^2 - 10^3$ K)

CSP in Spain

Solar to Power: The potential of CSP

- Solar to power needs to provide dispatchability.
 Two options:
 - 1. Fuel-based backup (hybridization)
 - Thermal Energy Storage (TES)
- CSP can ideally adapted for both options
- CSP competes with PV with storage (batteries) to guarantee dispatchability

(PV is cheaper without storage but more expensive with batteries, which should be actually the basis for comparison)

Options of dispatchability

HYBRIDIZATION WITH BIOMASS KEEP THE OVERALL SYSTEM RENEWABLE

2. Concept Solar-Biomass Hybridization

Pros / Cons

- 100% Renewable Energy Plants
- Full Dispatchability
- Fuel Saving (vs Standalone Biomass Plant)
- Increased Capacity Factor (vs Standalone CSP Plant)
- Distributed power: CSP plants in regions with: (i) moderate DNI (≥1700 kWh/m²/y) and (ii) moderate biomass resources
- Increased O&M Costs
- Biomass Availability
- Effect of Biomass on Solar Plant (dust, smoke...)

3. Hybridization Strategies

- Biomass in Parallel with Solar Field
- 2. Biomass in Series with Solar Field
- 3. Biomass in Parallel with Solar Steam Generator, Power Block
- 4. Biomass in Series with Solar Steam Generator, Power Block
- 5. Combination of the 2 above
- 6. Hybridization at Solar Receiver (gasification only)
- 7. Combined Cycle (gasification only)

Biomass Boiler in parallel to Solar Field (C1)

Biomass Boiler in series to Solar Field (C2)

Biomass Boiler in Parallel with Solar Steam Generator (C3)

Biomass Boiler in series to Solar Steam Generator (C4)

Biomass Boilers in parallel + series to Solar Steam Generator (C5)

Hybrid Receiver (C6)

Combined Cycle (a) (C7)

* CS=Solar Field; CG=Biomass Convertor; INT=Heat Exchanger (Steam Generator); CR=Rankine Cycle; TG=Gas Turbine

Combined Cycle (b) (C8)

* CS=Solar Field; CG=Biomass Convertor; INT=Heat Exchanger (Steam Generator); CR=Rankine Cycle; TG=Gas Turbine

Comparison of Configurations

FEATURES	C1	C2	C 3	C4	C5	C6	C7	C8
Off-Sun Generation	X	-	X	-	X	X	X	X
Increase Power Block Efficiency	-	X	-	X	X	-/X	-	X
Decouple Solar and Biomass Resources	X	-	X	-	-	X/-	X	-
Easy Integration in Current STE Plants	X	-	X	-	-	X/-	-	-
Increase Biomass to Electric Efficiency	-	-	X	X	X	X/-	X	X
Low Technology Risk	X	X	X	X	X	-	-	-
Stable Solar receiver operation	-	-	-	-	-	X/-	-	-

4. Commercial experience

First CSP-Biomass Power Plant: Borges Termosolar, Lleida, Spain

• Solar field: 183 120 m² aperture area

Back-up block: 20 MWth biomass boiler, 20 MWth dual biomass and

natural gas boiler, 10 MWth natural gas auxiliary boiler

Folie 18

AG5 Alberto Gomez; 22.10.2017
AG6 Alberto Gomez; 22.10.2017
AG7 Alberto Gomez; 22.10.2017

Borges: Comparison with Standalone CSP and PV

1		and the same	1
	CSP Borges	PV Plant	
		Same Location	
Energy Production (MWh/year)	98.000	98.000	Comparison criteria: same electrical production
Installed Power (MW)	22,5	77,94	electrical production
Running Hours (per year)	6354	1283	(equivalent hours)
Required Surface (Ha)	70	130-135	
Efficiency (kWh/MW installed)	4.356	1.257	3,464 Ratio
Investment (M€)	150	117	22,0% Price diff.
Back Up required	NO	YES	Extra Investmet required
Dispatchability	YES	NO	
Supports Grid stability	YES	NO	

- ✓ Energy production with very low or no solar radiation
- ✓ Designed to achieve 50% turbine's workload at nights, avoiding sharply efficiency decreases. Turbine efficiency 37% at full load
- ✓ Biomass consumption: 66 000 t/y (45% moisture)
- ✓ DNI: 1800 kWh/m²/y
- ✓ 6500 h/y operation \rightarrow CP: 0,74
- ✓ Cost: 153 M€

5. CSP-biomass hybridization vs Standalone CSP plants

Lower investment cost (CAPEX):

Biomass Standalone_{CAPEX} < CSP-Biomass_{CAPEX} < CSP Standalone _{CAPEX}

Higher capacity factor (CF)

CSP Standalone _{CF} < **CSP-Biomass**_{CF} < Biomass Standalone_{CF}

CSP-biomass hybridization vs Standalone CSP plants

- Higher dispatchability
- Lower solar multiple (less solar field's area required)
- Higher power generation
- Lower LCOE
- Higher thermodynamic efficiency due to continuous turbine operation at higher loads

CSP-biomass hybridization vs Standalone CSP plants

✓ Capital requirements profitable even in small and medium sized plants (if compared with CSP standalone)

Power Utility (MWh)

6. Biomass conversion options

Gasification (vs Combustion)

- Enables high-efficient hybridization (hybrid receiver, CC)
- More flexibility in "ready-to-hybridized" applications:
 - ✓ Easier performance during transients
 - ✓ Syngas storage
 - ✓ More efficient and controlled burning
- Enables syngas cleaning (waste feedstocks)

7. Potential of FB technology in hybridization

- FB convertor (boliler and gasifier) (FBC)
- FB heat exchangers (FBEx)
- FB Thermal Energy Storage (FB-TES)
- Combinations

FBEx: Solid Particle Receiver-based CSP system (NREL)

SandTES: Active fluidization energy storage (TUV)

Compartmented Fluid Bed Receiver (IRC, 2013)

Conclusions

- Solar-biomass hybridization is a promising concept (only one plant at commercial scale)
- 2. Storage or backup fuel is necessary to garantee dispatchability. CSP-biomass hybrid is more competitive tan PV with batteries
- 3. Different alternatives of CSP hybridization with biomass, both based on combustion and gasification of biomass
- 4. Integration in current parabolic trough technology is straightforward and seems to be feasible
- 5. Challenges for advanced, more efficient concepts remain huge. Development of gasification seems to play a key role
- 6. Advanced design in development for both TES and hybrid integration

6. Biomass conversion options: Gasification vs Combustion

Thank you

Contact: Alberto Gómez Barea (agomezbarea@us.es)

IEA FBC and IEA Bioenergy Task 33. Fluidized Bed Conversion of Biomass and Waste

24-25 Oct 2017. Skive (Denmark)