

TCPDU Operations in Support of 2012 Thermochemical Joule Milestone

IEA Task 33 NREL Workshop

Richard Bain

9 May 2013

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Presentation

- Objectives of Testing
- TCPDU Design
- Operating Parameters
- Unit Operations Characteristics
- Product Gas
- Conversions Achieved

Acknowledgements

The dedication and extra effort of the TCPDU staff instrumental in the successful completion of pilot operations supporting the 2012 DOE Thermochemical Joule Milestone is gratefully acknowledged.

> Richard Bain Danny Carpenter Steve Deutch Calvin Feik Joe Gardner Katie Gaston Ray Hansen Dave Isham

Christa Loux Bill Michener Marc Oddo James Page Steve Phillips Kristin Smith Mike Sprague Jim Stunkel

Objectives

- Demonstrate Long Term Operability of the Thermochemical PDU (TCPDU)
 - Gasifier (fluid bed reactor and thermal cracker)
 - Char cyclones
 - Fluid bed reformer (NREL Ni catalyst)
 - Packed bed filters
 - Packed bed catalytic reactor
 - Scrubber
 - Blower
- Generate a Conditioned Syngas Meeting the Biomass Program 2012

Purity Targets

 Provide Conditioned Syngas to the Mixed Alcohol Synthesis System as Part of an Integrated 200 hour Campaign to Produce Mixed Alcohols from a NREL Mixed Alcohol Catalyst

Steam reforming targets for the 2012 demonstration

Species	Conversion			
Methane	80%			
Benzene	99%			
Tars	99%			
Catalyst replenishment rate (for fluidizable catalyst)	0.1% of inventory per day			

Integrated NREL Thermochemical Pilot Process

NREL Thermochemical Pilot Development Unit (TCPDU)

Schematic of the fluidized bed reformer (R600)

Schematic of the PBR

Benzene Fractional Conversion, N1D1 Model

Bain, R. L., D. C. Dayton, D. L. Carpenter, S. R. Czernik, C. J. Feik, R. J. French, K. A. Magrini-Bair and S. D. Phillips (2005). "An Evaluation of Catalyst Deactivation During Catalytic Steam Reforming of Biomass-Derived Syngas," *I&ECR*, 44, p 7945-7956

Catalyst Performance in SMARTS Reactor

Proximate and ultimate analysis of white oak pellets

Loss on drying (wt%)	6.12
Proximate Analysis (wt% dry)	
Volatile matter	79.74
Fixed carbon	13.75
Ash	0.39
Ultimate Analysis (wt% dry)	
Carbon	52.79
Hydrogen	6.42
Nitrogen	0.09
Oxygen	40.69
Sulfur	0.01
HHV (MJ/kg)	18.68

Operating parameters for the gasification system

Parameter	Value			
Steam flow to 8FBR Gasifier	13.4 kg-h ⁻¹			
CO ₂ flow to 8FBR Gasifier	4.0 kg-h ⁻¹			
Biomass (oak) feed rate	7.5 kg-h ⁻¹			
8FBR Gasifier Temperature	650 °C			
8FBR Pressure	70 - 75 kPa			
8FBR Initial Olivine	23.25 kg			
Thermal Cracker Temperature	900 °C			
Plant Heat Trace Temperatures	550 °C			
Fluidized Bed Tar Reformer Temperature	900 °C			
R600 Initial Catalyst	60 kg			
PPBR Upstream Filters (FQ10 & FQ20) Heaters				
Temperature Set Point	700 - 850°C			
PPBR (RQ40) Heaters Temperature Set Point	840 °C			
Flow Set Point to Fuel Synthesis Room	6.5 kg-h ⁻¹			

Overall nitrogen-free mass balance for 150 h of gasifier operation

	Flow, kg/h
Oak in	7.48
Steam in	13.36
CO ₂ in	6.78
He & Ar Tracers in	0.35
N_2 in	(not measured)
SUM of INPUTS	27.97
Gas out of Scrubber	20.39
Char out	0.74
Water out	8.20
N ₂ out	-2.48
SUM of OUTPUTS	26.85
Overall Closure	96.00

Gas Composition Through Gasifier/Reformer (N₂ Free)

Configuration Gasifier Only G + R60		G + R600	G + R600 + PBR	Gasifier Only	G + R600+PBR
Carrier	Steam + CO2	Steam + CO2	Steam + CO2	Steam	Steam
S/B	1.79	1.79	1.79	2.0	2.0
CO2/B	0.53	0.53	0.53		
No. Samples	28	138	166	35	658
Gas Composition	, Mole % Nitrogen Fro	ee			
H2	20.10 +/- 0.85	39.90 +/- 1.38	44.41 +/- 1.31	37.48 +/- 0.27	59.78 +/- 5.78
СО	16.27 +/- 0.45	17.47 +/- 1.21	15.22 +/- 0.45	17.09 +/- 0.33	11.52 +/- 2.87
CO2	50.91 +/- 0.52	38.96 +/- 0.94	38.60 +/- 1.21	25.94 +/- 0.26	26.73 +/- 3.23
CH4	8.90 +/- 0.25	2.84 +/- 0.86	0.77 +/- 0.17	13.08 +/- 0.20	0.88 +/- 1.10
C2H6	0.23 +/- 0.24	0.00 +/- 0.00	0.00 +/- 0.00	0.04 +/- 0.00	0.00 +/- 0.05
C2H4	1.89 +/- 0.04	0.00 +/- 0.00	0.00 +/- 0.00	2.58 +/- 0.07	0.05 +/- 0.30
C2H2	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00	0.78 +/- 0.01	0.01 +/- 0.10
C3H8	0.02 +/- 0.02	0.03 +/- 0.07	0.01 +/- 0.01	0.79 +/- 0.01	0.00 +/- 0.06
C3H6	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00	0.00 + - 0.00	0.00 +/- 0.03
1-C4H8	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00
2-t C4H8	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00
2-c C4H8	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00	0.00 + - 0.00	0.00 +/- 0.00
Ar/He	1.68 +/- 0.05	0.80 +/- 0.51	0.99 +/- 0.04	2.23 0.03	1.03 +/- 0.17
H2S (ppmv)	9.71 +/- 5.12	4.37 +/- 5.94	11.69 +/- 4.58	ND	ND
COS (ppmv)	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00	ND	ND
H2/CO	1.24 +/- 0.05	2.30 +/- 0.24	2.92 +/- 0.07	2.19 +/- 0.04	5.36 +/- 1.17

Fluid Bed Gasifier and Thermal Cracker Temperatures NREL TCPDU

Fluid Bed Gasifier and Blower Inlet Pressures NREL TCPDU

Fluid bed reformer temperature and pressure drop

Packed Bed Reactor Subsystem Temperatures NREL TCPDU

Packed Bed Filters Temperatures and Pressure Drop NREL TCPDU

Biomass, steam, and gas flow rates

Gas Composition, Scrubber Exit NDIR Data, NREL TCPDU

Methane conversion across sum of reformers and H₂:CO ratio at scrubber exit

Schematic of the Molecular Beam Mass Spectrometer

Mass spectral peak assignments of common hydrocarbons sampled with the TMBMS during steam gasification.

Molecular Weight	Formula	Chemical Name(s)
15,16	CH_4	methane
26	C_2H_2	acetylene
78	C ₆ H ₆	benzene
91,92	C ₇ H ₈	toluene
94	C_6H_6O	phenol
104	C ₈ H ₈	styrene
106	C_8H_{10}	(m-, o-, p-) xylene
108	C ₇ H ₈ O	(m-, o-, p-) cresol
116	C ₉ H ₈	indene
118	C_9H_{10}	indan
128	$C_{10}H_8$	naphthalene
142	$C_{11}H_{10}$	(1-, 2-) methylnaphthalene
152	$C_{12}H_8$	acenapthylene
154	$C_{12}H_{10}$	acenaphthene
166	$C_{13}H_{10}$	fluorene
178	$C_{14}H_{10}$	anthracene, phenanthrene
192	$C_{15}H_{12}$	(methyl-) anthracenes/phenanthrenes
202	$C_{16}H_{10}$	pyrene/fluoranthene
216	$C_{17}H_{12}$	methylpyrenes/benzofluorenes
228	$C_{18}H_{12}$	chrysene, benz[a]anthracene,
242	$C_{19}H_{14}$	methylchrysenes, methylbenz[a]anthracenes
252	$C_{20}H_{12}$	perylene, benzo[a]pyrene,
266	$C_{21}H_{14}$	dibenz[a,kl]anthracene,
278	$C_{22}H_{14}$	dibenz[a,h]anthracene,

Average steady state tar conversions during integrated run

Compound	Conversion [†]
Benzene	97%
Naphthalene*	100%
Benzo(a)Pyrene*	100%

* Surrogates used to represent tars.
[†] 100% conversion indicates that effluent

concentration is below detection limits

Benzene, naphthalene, and heavy tar conversions

		% be	nzene	% naphthalene		% "heavy tar"		
		conv	ersion	n conversion		conve	ersion	
			R600	R600			R600	
Date	Time	R600	+PBR	R600	+PBR	R600	+PBR	
9/10/12	11:00	n/a	93.5	n/a	99.8	n/a	100	
9/10/12	12:30	60.9	92.6	81.1	99.9	100	100	
9/10/12	15:30	56.5	91.7	72.6	99.5	93.2	100	
9/11/12	11:30	n/a	97.5	n/a	99.8	n/a	99.5	
9/11/12	12:30	76.7	97.1	93.4	100	100	100	
9/11/12	13:30	74.3	97.2	92.6	100	98.9	100	
9/11/12	14:15	n/a	98.3	n/a	100	n/a	100	
9/11/12	15:45	75.1	98.1	91.0	100	100	100	
9/11/12	16:30	n/a	98.2	n/a	99.9	n/a	100	
9/11/12	18:45	n/a	98.0	n/a	99.9	n/a	100	
9/12/12	10:30	69.2	96.6	91.9	100	100	100	
9/12/12	11:30	n/a	99.1	n/a	100	n/a	100	
9/12/12	13:30	75.7	98.1	94.3	100	100	100	
9/12/12	15:00	75.6	97.6	93.8	100	100	100	
9/12/12	16:00	77.4	96.8	95.0	100	100	100	
9/12/12	17:00	77.3	97.2	93.9	100	100	100	
9/13/13	15:00	78.2	97.1	93.1	100	100	100	
9/13/12	16:45	n/a	97.5	n/a	99.7	n/a	100	
9/14/12	10:45	n/a	97.3	n/a	99.9	n/a	100	
9/14/12	11:45	n/a	99.2	n/a	99.9	n/a	100	
9/14/12	13:45	78.0	97.4	94.6	100	99.1	100	
9/14/12	14:45	75.9	97.9	93.8	100	n/a	n/a	
9/14/12	17:00	n/a	96.9	n/a	99.8	n/a	n/a	
9/15/12	10:00	n/a	96.8	n/a	99.9	n/a	100	
9/15/12	11:00	n/a	97.0	n/a	99.9	n/a	100	
9/15/12	12:05	98.7	n/a	99.5	n/a	100	n/a	

Average R500 outlet concentrations (wet basis):

Benzene:	6.40±0.33 g/Nm ³ (1840±90 ppmv)
Naphthalene:	2.44±0.10 g/Nm ³ (430±20 ppmv)
"Heavy Tar":	3.95±0.79 g/Nm ³ (350±60 ppmv)

	Benzene			Naphthalene			Heavy Tar		
Inlet concentration, ppmv R600	1840	+/-	90	430	+/-	20	350	+/-	60
AVE Conversion, %	73.1	+/-	6.1	90.9	+/-	6.1	99.2	+/-	2.0
MAX conversion, %	78.2			95.0			100.0		
MIN conversion, %	56.5			72.6			93.2		
R600 + PBR									
AVE Conversion, %	97.0	+/-	1.8	99.9	+/-	0.1	100.0	+/-	0.1
MAX conversion, %	99.2			100.0			100.0		
MIN conversion, %	91.7			99.5			99.5		

Reformers benzene and tar conversion

MBMS Ion traces - gasifier/reformer/PBR/scrubber NREL TCPDU

Sep 12, 2012

Mass spectra for gases at the outlet of the gasifier, fluid bed reformer, and PPBR

Summary Results

Key technical targets for tar reforming and mixed alcohol synthesis consistent with those outlined for 2012 in the Office of Biomass Programs' Multi-Year Program Plan were met or exceeded. Successful production of mixed alcohols from biomass was demonstrated in an integrated pilot plant process, with additional bench-scale experiments conducted to further validate performance measures beyond the constraints of the integrated runs.

When the technological improvements are translated into an estimated nth plant commercial cost of production (MESP) using NREL's techno-economic models (described in report NREL/TP-5100-51400 available at http://www.nrel.gov/docs/fy11osti/51400.pdf), the resulting MESP is \$2.05/gallon and the conversion cost is \$1.31/gallon, as shown below in Table ES-1. Furthermore, the \$61.57/dry ton feedstock cost was demonstrated by the Idaho National Laboratory.

The catalysts developed to meet technical targets are robust and can be produced at scale.

Integrated gasification, reforming, acid gas removal, and mixed alcohol synthesis was demonstrated at pilot scale for 330 h using both industrial and in-house catalysts.