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CORRELATIONS: SINGLE-PHASE FLOW

Relationships for single spherical particles in single-phase flow have been
determined by Frossling (1938), Ranz-Marshall (1952) , Rowe (1965)

Nu,=2+0.69Re °->Pr0-33
Sh_=2+0.69Re 05Sc0-33

Gas conduction and gas convection terms, related to the particle
diameter d,, are analogous for heat and mass transfer in this case.

Contribution from radiation has to be added in the heat transfer case.

Heat transfer Nu,=hd/k  Pr=pc/k
Mass transfer Sh,=pd,/D  Sc=v/D



HEAT AND MASS TRANSFER BETWEEN THE GAS AND
ACTIVE PARTICLES IN THE BED

Gas passes through the space between
the particles with velocity u,_ /e

Two large active particles surrounded by smaller inert particles
in a bed with fluidization velocity u.



APPLICATIONS

Various chemical engineering processes in fluidized bed, e.g. in fuel conversion
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CORRELATIONS: FLUIDIZED BED

There are many correlations giving different results having a similar structure
(Shown for heat transfer (Nu) but analogous for mass transfer (Sh))

Nu, = const +const(Re, /& )" Pr’™

where Nu, =hd,/k, Re, =u,d,p, /u

a,mf

or
Nu. =const Ar"(d,/d;)"
where Nu; =h.d;/k, and Ar:df’g,og(,os—,og)/,u2

Transformations Nu; = Nu.d; /d,
Re, .« =Re, d;/d,

a,mf i

Re; = Ar /(1400 +5.22 Ar™)



Baskakov-Palchonok’s approach: HEAT AND MASS TRANSFER
INTERPOLATED BETWEEN d_=d. and d_>>d.

* Sh;or Nu, is the low limit d_=d.
* Sh;orNu, is the large limit d ,>>d,
* Sh,or Nu, are in between the limits

The interpolation formulae:

Nu; = Nu;
Nu, —Nu;
Sh,—Sh
Sh1 B Shi,oo

=(d./d )"
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THE d.=d, LIMIT
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fit to data 1n the limit d,=d. (Palchonok et al., 1992)

Nu, =6 + 0.117Ar 039 pr0-33
Sh, =2¢_.+0.117Ar.03%Sc0-33



THE LARGE ACTIVE PARTICLE LIMIT d_>>d.

Transfer to a large, fixed, and rounded object 1n a fluidized bed,
Baskakov (1973),

Nu, , = 0.85Ar"'? +0.006 Ar®* pr®*

Sh, . =0.009Ar"Sc™*

| b The mass (and heat) transfer coefficient
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AVAILABLE HEAT TRANSFER CORRELATIONS

Scott et al. 2004
Tsukada and Horio, 1992
Prins, 1987

Babosa 1985

Shah, 1983

Palchonok and Tamarin, 1983
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HT: Scott et al. 2004; Nu, =2+1.0 Re’6 (%)0-26
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HT: Barbosa et al., 1995; NULmalx =5.33Ar""” (d—i)o'25
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HT: Tsukada and Horio, 1992:
Nu, ... =(d, /d)*®; Nu, . =(7.5+0.1PrRe, )(d,/d,)"’
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HT: Prins, 1987; NU; .. = 3.539Ar“(;|]|—‘)°'257 where n= O.IOS(dd—i ~0.002
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HT:Palchonok and Tamarin, 1983;
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OVERVIEW OF THE PUBLISHED HEAT TRANSFER DATA
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Nu.

Fit of heat transfer data
=Nu, ., +(Nu, — Ny, . )(d, /d_ >

10

Nu, or Nu
1 max

Correlations, o Barbosa, + Prins, @ Tsukada and Horio

Measured part of correlation

Nu=(d/d )°®®(Nu-Nu__ )+Nu
| I da | max m

ax’

10

10’ 10
Active particle size d, mm

17



SELECTED MASS TRANSFER CORRELATIONS

Scala 2007
Hayhurst and Parmar 2002

Prins 1987
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MT: Scala, 2007;
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OVERVIEW OF THE MASS TRANSFER CORRELATIONS

sh,

10°

10

10°¢

1071

10 L

F Scala's data
[ red *measured da=4‘6 mm

[ green” measured d‘=0.55 mm
| o correlationd =0.2;1;4.6; 8.2 mm within range
+correlation d_=20 mm, Ar>2 10* outside ran

0 da=d‘ (extrapolated)

(]
£
s
s
»

#70.5"sh (arge d)

Data:
T=450+273 K

density 2500 kg/m®
D=5.13 10 6" (T/273) 1.75 m%/s (Sc=2.5)
eps=0.44

Ar

10

10

10’

10

10™

10

T
Prins' correlation

Lines for da=2, 4.8,10,14,20 mm

T=273+65 K, eps=0.4

21



sh,

COMPARISON PRINS-SCALA

Scala’s conditions in both
correlations
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Sh.

Fit of mass transfer data
Sh, = Sh, ,, +(Sh, - Sh; . )(d, /d )"
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CONCLUSIONS

The agreement between available correlations on heat and mass transfer to active
particles in fluidized beds is not extremely high.

However, the data in the measured ranges are at least within the limits of the
Baskakov-Palchonok approach.

Therefore, an estimate of coefficients is obtained by
Nu; = Nu;, , +(Nu, —Nu; , )(d, /d,)"
Sh, = Sh, , +(Sh, —Sh, ,)(d, /da)l'o

A seemingly more accurate estimation would be given by the correlation of choice,
applied within its measured range.

It was shown that most correlations (exception Prins’ for mass transfer) give
erroneous values when extrapolated to large active particles.

Also, despite the dimensionless representation, the correlations depend on the
properties of the media, e.g. the Schmidt number in the case of mass transfer.



Appendix: HEAT TRANSFER TO AN ACTIVE PARTICLE (a) IN A
BED OF INERT PARTICLES (i): Model-free correlations

Some available correlations:

Tamarin et al. (1982) Nu, = SAr0-207(da)0.65

Tamarin et al. (1985) NU; ... =0.41Ar —03(d )—Oz(p )07 066

Shah (1983) NU,,, =7.6Reli™ ‘; )°'I18(3—i)°'8°|5 for Re,, <170
Nu,_ =0.463Re gpi%(—é)o-g“ for Re,, >170

Cobbinah et al. (1984) NU, . =3 254Ar°1°4((:la )%t

Nu, ... =3.539Ar" ((; )"*7 where n=0. 105( )°°62

Prins (1985)

_ 0.14 da -0.15 Cp.ipi 0.17
Barbosa et al. (1993) NU,,. =0.61Ar (d_) (——)

i Cp,gpg

Scott et al. (2004), Collier et al. (2004) Nu, =2+1.0Re,; ,( a)0'26
(Cambridge) !
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