

Catalytic and electrochemical conversion of biomass resources

RESEARCH | TECHNOLOGY | CATALYSTS

John Bøgild Hansen - Haldor Topsøe Berlin, October 27, 2015

We have been committed to catalytic process technology for more than 70 years

- Founded in 1940 by Dr. Haldor Topsøe
- Revenue: 700 million Euros
- 2600 employees
- Headquarters in Denmark
- Catalyst manufacture in Denmark and the USA

Tar reforming – Enabling technology for biomass gasification

- Gasification of biomass results in a syngas that contains tars and contaminants
 - 1000 -2500 ppm tar
 - 50 100 ppm S, particulates
 - 850-930°C, 1-30 bar g
 - Ammonia decomposition

"Dusty" tar reforming

Skive Fjernvarme a.m.b.a. (Skive CHP)

Location	Skive, Denmark
Capacity	21 MW_{th} , Max 28 MW _{th}
Operational year	2009
Fuel consumption	100 TPD
Fuel	Biomass, wood pellets
Gasification techn.	Air blown, bubbling fluidized bed
Pressure range	1 – 3 bar g
Power generation	Gas engines

Skive Fjernvarme a.m.b.a. (Skive CHP)

Power production for Skive CHP plant

Gas Technology Institute, Chicago

Location	Chicago, USA
Capacity	~ 4 MW _{th}
Fuel consumption	18 TPD
Fuel	Biomass, wood pellets
Gasification techn.	Oxygen blown, bubbling fluidized bed
Pressure range	1-9 bar g

"Clean" tar reforming

Gas Technology Institute, Chicago

- Tar reformer ~ 1150 run hrs
- No soot formation
- 15 min. lack of oxygen
 - No deactivation!

Transportation Fuel for Diesel & Fuel Cells

Methanol from sustainable sources BioDME Black Liqour to Green DME Demo

Topsøe IMetgeaned Toase a line ynthesis

25 bbl/d Demonstration Plant

Green Gasoline from Wood Using Carbona Gasification and Topsoe TIGAS Processes

Fuel Cell and Electrolyser

 $H_{2} + CO + O_{2} \xrightarrow{\text{SOF}} H_{2}O + CO_{2} + \text{electric energy } (\triangle G) + \text{heat } (T \triangle S)$ HALDOR TOPSOE

SOEC more efficient than present Electrolysers Internal waste heat used to split water

Methanation essentials

• $CO_2 + 4H_2 = CH_4 + 2H_2O$

How to build the world largest SNG plant

 Qinghua plant is largest single line SNG (methanation) in world.

Biogas to SNG via SOEC and methanation of the CO_2 in the biogas

Exergy Flows in CO₂ case

Power to Gas Exergy Efficency 79.8 %

GreenSynFuel Project

Mass Flows in Wood to MeOH

Mass balances for Wood Gasification to MeOH

Flows in Metric Tonsperday

Mass Flows in Wood + SOEC to MeOH

Mass balances for combined Wood Gasification and SOEC to MeOH

Flows in Metric Tons per day

Conclusions

- Dusty tar reforming is now commercially proven
- Clean tar reforming has been demonstrated in connection with succesful MeOH/DME and gasoline synthesis at 25 bbl/day
- Sustained black liquor to DME has been proven at 4 MTPD scale and truck operation as well
- Coupling SOEC with biomass gasification can double the biomass potential by converting excess carbon.

Using the gas system as a key integrator

Biogas in the future integrated energy system