Gasification of biomass and waste for production of power: The cases in Lathi and Vaasa

Metso Power, Claes Breitholtz

Metso is a global supplier of sustainable technology and services

More value from biomass

Metso's CFB gasifier

Industrial experience

Tampella Power

- 15 MWth pressurized FB gasifier and gas cleaning
- Piloting ended 1996

Metso BFB & CFB boilers

- Fluidized bed technology
- Project execution resources

- Atmospheric CFB gasification
- Värö project start-up 1987

New gasification development

- Own process
 dimensioning tools
- Dryer technology
- Product gas filtration tests

Metso's CFB gasifier

CFB	Gasifier	Cyclone CFB reactor Fuel feeding
Size	20 – 140 (300) MWth	Product gas/ gasification air - heat exchanger
Fuel	Biomass, waste	
Gasification media	Air	
Operating temperature	750 – 900 C	
Operating pressure	5-30 kPa(g)	
Product gas heating value	3-7 MJ/m ³ n (LHV)	Product gas line
© Metso 2013-11-19 Claes Brei	tholtz	T metso

Metso's gasification solutions

- Sawdust, forest residues, fresh wood, bark
 20 – 80 MW_{fuel} units
 Typically includes a dryer
- Dusty product gas
- Also other types of kilns possible

Product gas for power boilers

- Woody biomass, bark, peat, straw...
- Superior electricity efficiency
- (Existing) power boilers
- 50 150 MW_{fuel} units
- Typically includes a dryer
 (Gas filtering)

Product gas from waste for power production

- Waste-derived fuel
 - High electricity efficiency
- Typically a new gas boiler
- Gas filtering -> clean
 product gas
- 50 100 MW_{fuel} units or multiple units connected to a boiler

Indirect gasification of biofuels

 Suitable for clean biofuels

•Suitable for cases HIGH HEATING VALUE GAS is needed (SNG, refinery feed motors)

CFB Biomass Gasification

Vaskiluodon Voima, Vasa, Finland

Vaskiluodon Voima Oy gasification project

Enables to replace a large share of coal with biomass

- Existing 560 MW coal-fired power plant from 1982
 - electricity 230 MW
 - district heating 170 MW, approximately 90% of the district heat needs in Vaasa region
- 140 MW biomass gasifier and dryer
- Up to 40 percent replacement of coal
- The project in a nut shell
 - Contract signed June 2011
 - Plant operational 12/2012
 - Total project cost < 40 M€

Co-firing is an efficient way to use biomass Example:100 MW of bio fuel available at the district

Vaskiluodon Voima biomass gasification plant

Biomass receiving and pre-handling

Large-scale belt dryer

CFB gasifier 140 MW_{fuel} Existing PC boiler modifications and new burners

Fuel moisture vs. gasifier output

Fuel moisture	20% (Design point)	30%	40%
Gasifier max output %	100	89	77
Example case: Waste fu	iel, HHV dry 22,5 M	J/kg, Ash 7,	6%

Gas heat value MJ/m³n hot (incl. sensible heat)

Metso belt dryer for biomass

Biomass dryer

Vaskiluodon Voima

	Start-up	2012
	Process	Gasification (140 MW)
	Materal	Forest resudues (chips)
	Size	274 m ² / 2 950 ft ²
<	Layer type	Single
	Heat source	Water/glycol-50% 73 - 85°C / 163 - 185°F
	Capacity	10 metric tons/h of evaporated water

Benefits of adding a biomass gasifier into a existing coal-fired plant

- → Produces electricity from biofuels with high efficiency
- → Replaces fossil fuel with biomass in large scale
- \rightarrow Increases fuel flexibility
- → Original coal capacity can be kept
- → Reduces CO₂ emission economically
- → Relatively low investment cost
- → Short delivery time and minimized production interference

CFB Waste Gasification

Lahti Energia Oy, Lahti, Finland

Full scale demonstration of gasification of SRF for production of electricity and heat

- 160 MW/ 250 000 ton/a SRF to gasification
- Electricity production: 50 MW
- District heating: 90 MW
- Electricity efficiency (net): 31%
- Total investment: 160 M€

Lahti waste gasification plant

D metso

Gas cleaning enables high steam parameters

- Gasification at 850 900°C
- The gas is cooled to about 400°C
 - The corrosive components condense and form particles
- Filtering of the gas
 - The corrosive components are separated from the gas
- The fliterad gas is burnt in a gas boiler with high steam data: 540 °C, 121 bar.
- Flue gas cleaning after the boiler
 - SCR, dry flue gas cleaning

Temperature [C]

Temperature window for gas cleaning

Design of gas cooler

- Low enough temperature to condense corrosive components
- Low enough temperature to avoid corrosion in the cooler it self
- Enough temperature to avoid condensation of tar
- Reasonable in size

Ceramic high temperature filters

- The filters withstand high temperature
- Condensation of tar has to be avoided

Solid Recovered Fuel (SRF)

• Fuel fractions used in Lahti

- Sorted houshold waste, industrial wate, demolition wood
- Demands on particle size: same as för CFB boilers
 - >90 % pass a 63 mm sieve
 - Max length 200 mm
- Fuel quality
 - Max moisture < 30..40 %. Normaly recommended 15-25 %
 - LHV 13-20 MJ/kg as received
 - Large non combustibel particles lowers the availability

Adjustment to handle SRF

Feeding Master

Fuel feeding for demanding fuels

Stable operation in varying conditions

- Stable flame
 - No need for support fuel
 - Over 35% moisture content
- Excellent combustion
 - 2s, 850°C
 - Very low CO, with low O₂
- Process recovers from interruptions
 - Load changes
 - Fuel feeding blockages
- Reliable fluidization
 - No problems with sintering

Basic idea works - No corrosion detected

Gas cooler and boiler inspected

- Gas cooler walls
 - Smooth steel surface below fouling layer
 - Manufacturing tracks are still visible
 - Thicknesses measured after 4500h are the same than original ones
- Gas boiler
 - Smooth pipe surfaces
 - Manufacturing tracks are still visible
 - No visible marks of corrosion anywhere
 - Next measurement in spring

