

Energy research Centre of the Netherlands

MILENA gasification bed materials

Christiaan van der Meijden

Overview

- MILENA gasification process
- Facilities
- Bed materials tested + results
- Conclusions.
- Bed material topics of interest

ECN MILENA gasification technology

- Developed for high efficiency
- Medium calorific gas, low N2
- Complete conversion, no carbon in 3. ash
- High CH4 content, suitable for Bio-SNG production
- Suitable for scale-up and pressurized operation
- High tar content

nh..D.pMepSevr13 6 5₂)

MILNEA 30 kWth Lab-scale installation

- More than 3000 hours of operation in gasification mode
- Tested fuels: Wood, sewage sludge, grass (not successful) and lignite.
- Bed materials: Olivine (Austria, Norway, Canada), dolomite (calcined and fresh) and Sand (+additives).

Lab scale MILENA + OLGA + SNG installation

More than 2500 hours of operation in gasification mode since 2004. Tested fuels: Wood, sewage sludge, grass (not successful) and lignite

MILENA OLGA Methanation

gasification Gas cleaning

ECN MILENA pilot plant

- Thermal input 160 kg/h (800 kW HHV)
- In operation since 2008
- Connected to OLGA tar removal in 2009.
- Design fuel wood
- Gasifier / Riser diameter: 0.2 m
- Combustor diameter: 0.8 m
- Total height: 8 m
- Duration tests done with demolition wood and clean wood to generate engineering data for 12 MWth demo plant.
- Approx. 1000 h of operation.

MILENA pilot fuel example

MILENA gas composition example

Fuel		demolition	demolition wood		
Fluidization gas		steam	air	steam	
Bed material		olivine	olivine	olivine	
00	[u=10/1	22.6	20.0	20.0	
CO	[vol%]	33,6	28,6	39,9	
H ₂	[vol%]	28,1	21,1	23,8	
CO ₂	[vol%]	14,0	13,7	11,1	
CH ₄	[vol%]	13,1	9,8	15,3	
N ₂	[vol%]	4,2	23,5	3,9	
C_2H_2	[vol%]	0,3	0,2	0,2	
C ₂ H ₄	[vol%]	3,5	2,1	4,3	
C_2H_6	[vol%]	0,2	0,1	0,3	
C ₆ H ₆	[vol%]	1,0	0,7	1,1	
C ₇ H ₈	[vol%]	0,1	0,1	0,1	
H ₂ S	[√ppm]	403	355	-	
COS	[Vppm]	14	20	-	
NH ₃	[√ppm]	19450	-	-	
HCN	[∨ppm]	-	4000	-	
HCI	[Vppm]	150	-	-	
Tar total	[g/nm ³]	30	-	40	

Bed material research in MILENA:

- Main goal: Preventing fouling in cooler between gasifier and gas cleaning (OLGA). OLGA performs well, no need for additional tar / dust removal.
- Tar dew point reduction preferably below 300°C.
- No interest in reduction of light tars like naphthalene.
- No CH₄ reforming.
- Costs / bed material loss should be low.
- No negative effects on bed agglomeration.

MILENA tests:

- Tested bed materials / bed additives:
 - Sand
 - Austrian olivine (limited)
 - Norwegian olivine (no thermal pretreatment),
 MILENA standard bed material.
 - Canadian olivine (Olimag, thermally pretreated).
 - Dolomite as additive
 - CaO as additive

Note: Bed material testing was never a major topic, because tar removal is done by OLGA.

- Dolomite was tested because it is cheaper than olivine & is catalytically active
- Tests conducted:
 - 100% dolomite (CaCO₃/MgCO₃) as bed material
 - Mixed with sand
 - Calcined dolomite (CaO/MgO) mixed with sand

	Sand	Dolomite	12% Dolomite/sand	6% Dolomite/sand	9% Cal. dolo./sand
Tavg [°C]	860	854	857	845	~835
S/B [-]	0.5	0.37	0.34	0.33	0.34
H ₂ [vol%]	20	38-50	33	23	25
CO [vol%]	39	20-21	28	25	35
CH ₄ [vol%]	13	8-11	11	10	12
Tar class 5 [g/nm3 dr]	5	0.5	2.2	3	2.5
Total tar [g/nm3 dr]	32	2.1	21.8	27.3	26
Fines [gr/hr]	50	550	275	n.m.	45

Remark: fines from combustor only. No producer gas cyclone in lab MILENA

 Dolomite is flash calcined when added to the hot bed, can result in pressure peaks & alarms

 100% dolomite results is too much tar/carbon transport to the combustor and increasing temperatures

 12% dolomite in sand results controlable temperatures and reduces tar

 Calcined dolomite: no CO₂ peaks

Olivine experiments: lab scale (30 kWth)

- 3 types of olivine tested:
 - Pretreated olivine from Austria and Canada
 - Untreated olivine from Norway

Olivine experiments: lab scale (30 kWth)

	Sand	Olivine (No)	Olivine (Au)	Olivine (Can)
Tavg [°]	860	865	860	856
S/B [-]	0.5	0.5	0.7	~0.35
H ₂ [vol%]	20	26	21	22
CO [vol%]	39	33	31	30
CH ₄ [vol%]	13	12	10	12
Sum O ₂ + CO ₂ [vol%]	18	17	14	15
Tar class 5 [g/nm3 dr]	5	3	3	3
Total tar [g/nm3 dr]	32	28	25	25

Note: duration tests were done with Norwegian olvine

Olivine experiments: lab scale (30 kWth)

Finding MILENA olivine experiments (1/2)

- Tar reduction is limited.
- Norwegian olivine is the worst option, but availability in right fraction is best.
- Pretreated olivine (sintered, migration of Fe to surface) reduces tar concentration and transports O₂ (typical between 0 – 0.3 wt%).
- Untreated olivine, gets more active, over time during the reduction/oxidation cycles in MILENA.

Finding MILENA olivine experiments (2/2)

- Catalytic CO shift activity is influenced by air to fuel ratio in combustor.
- Despite bad performance Norwegian olivine is our standard in the lab and the pilot installation.

ECN Conclusions

- MILENA using sand or Norwegian olivine produces a lot of tar (40 gram/nm3), OLGA can handle this. The sensitive part is the cooler.
- Despite the high tar concentration both the lab-scale and the pilot scale installation run without fouling problems.
- Activity of Norwegian olivine is limited, better alternatives are available. Norwegian olivine has become our standard because of practical reasons.
- Bed materials remain a fuzzy subject.
- Measuring heavy tars is problematic.
- Addition of small amount of calcined dolomite looks promising, but pilot scale test failed because of flue gas cooler clogging.

Bed material topics of interest

- Fundamental understanding olivine (Fe, Ca, etc.).
- Alternative bed material testing in indirect gasifiers (e.g. MgO).
- Additives testing in indirect gasifiers.
- Practical issues related to dolomite (gas coolers, calcination, etc.).
- Measurements of heavy tar concentration.

MORE INFORMATION

Christiaan van der Meijden

e: vandermeijden@ecn.nl PO Box 1

t: +31 224 56 4582 NL 1755 ZG Petten

w: www.ecn.nl the Netherlands

publications: www.ecn.nl/publications

fuel composition database: www.phyllis.nl tar dew point calculator: www.thersites.nl

IEA bioenergy/gasification: www.ieatask33.org

Milena indirect gasifier: www.milenatechnology.com

OLGA: www.olgatechnology.com / www.renewableenergy.nl

SNG: www.bioSNG.com and www.bioCNG.com