

Johan Gadolin PROCESS CHEMISTRY CENTRE

Low-temperature corrosion in fluidised bed combustion of biomass

Emil Vainio Johan Gadolin Process Chemistry Centre Laboratory of Inorganic Chemistry Åbo Akademi

75th IEA-FBC meeting

Background

- Industrial interest in extracting more energy from flue gases
- Low-temperature corrosion of pre-heaters and the flue gas channel is a known problem in combustion
- Sulfuric acid has been thought to be the main cause
- Recent studies have shown that hygroscopic deposits causes corrosion in FBC of biomass and waste

SO₃ measurements • KCI salt method to measure SO₃/H₂SO₄ H₂SO₄(g) + 2KCI(s) \rightarrow K₂SO₄(s) + 2HCI(g)

- Range: 0.01 ppm_v 20 000 ppm_v
- Examples: BFB, CFB, Grate combustion, copper smelter, recovery boilers at pulp mills, IC engines, oxy-combustion, gas burners

Salt method to determine SO_3 and H_2SO_4

Vainio et al. Fuel 184 (2016)

Low-temperature corrosion in BFB combustion of biomass

BFB combustion of biomass, sludge and demolition wood with limestone addition

Deposit probe at 100°C

Deliquescence temperature

Definition: The temperature at which a salt or salt mixture at a fixed vol% H₂O absorbs enough water to fully dissolve

Deliquescence for some salts

Yang et al. Journal of Solution Chemistry, Vol. 35

Thermodynamic calculations - mixtures

Experimental points from Carroll et al. Geo trans 6(2) (2005)

Study of deliquescence at ÅA

- Deliquescence temperature of CaCl₂ and other salts at various water vapor concentrations
- Corrosiveness of deliquescent salts on carbon steel
- Effect of varying water vapor concentration on the deliquescent behavior and corrosion

1. Determination of the deliquescence temperature

- ~50 mg of CaCl₂
- Temperature of furnace slowly decreased from 200°C until deliquescence
- Various H₂O concentrations
- Determination of hysteresis effect

Determination of deliquescence temperature

CaCl₂, 25 vol% H₂O

Hysteresis effect of CaCl₂

....

Deliquescence of CaCl₂

2. Corrosion tests

Corrosion rates

Vainio et al. 2016 Impacts of Fuel Quality on Power Production

Corrosion test with varying H₂O at 120°C

Vainio et al. 2016 Impacts of Fuel Quality on Power Production

Results – hysteresis effect

Corrosion rate = 0.5 mm/year

Vainio et al. 2016 Impacts of Fuel Quality on Power Production

Conclusions

- Hygroscopic deposit in FBC of biomass may cause lowtemperature corrosion
- At high water vapor concentrations this may occur at temperatures well above 100°C
- If deliquescence occurs corrosion is usually severe
- Once CaCl₂ absorbs water, the water is released at a much higher temperature than the deliquescence temperature
- During down-time of a boiler, hygroscopic deposits may initiate and cause corrosion by absorbing moisture from the air

Acknowledgements

This work is a part of the project, 'Low temperature corrosion in combustion – old problem, new approaches' (Decision No. 289869) is financed by Academy of Finland and is gratefully acknowledged

Thank you for your attention!