Reject gasifier ESKA

BTX co-production (ESKA-ECN ESKAGAS project)

IEA Bioenergy Task 33 – Workshop on Waste gasification

May 8th 2018

A.J. Grootjes (ECN, part of TNO)

Content

- ESKA
- Socio-economic developments
- The initiative of ESKA: CFB gasification of paper rejects
- What are the results?
- ECN and ESKA in the project ESKAGAS
- On-site measurements
- Lab-experiments and co-production
- Conclusions

We're in

We're in stationery

We're global

Developments

Society:

- Useful handling of mass, energy, waste
- No hinder, safer, cleaner
- Space conscious

•Economics:

- Raw materials for recycling become scares, expensive, polluted
- Increased cost for residue disposal
- Despite strongly improved energy-efficiency, the overall energy cost increase

Both developments pose a threat for us

The opportunity

Prevent

Lansink's Ladder, waste management hierarchy:

- Recycle paper
- Use residues for steam production
- Reduce natural gas use
- Reduce residues disposal
- B ReuseC RecycleD EnergyE Incinerate
- **F** Land fill

Basis of the initiative

- Convert paper recycling residues into energy for own use. Close ESKA's cycles
- Reduce the market-driven risks of energy and residues
- Located at the factory premises Hoogezand
- Must fit within the existing noise permit
- Must comply to the current odor permit
- Very low flue gas emissions
- High mass- and energy efficiency
- Earthquake resistant

Reject gasifier

• 10 - 13 MWth input CFB gasifier, depending on LHV rejects

Boiler produces 5 – 16 ton/h steam (196°C, 13,6 barg)

System engineered and build by Leroux & Lotz

Build in 2016, in operation since Oct-2016

5900 hrs uptime in 2017,
 of which 4500 hrs on reject

- Fully automatic operation
- Current challenges are:
 - Not always at full capacity
 - Large variation in rejects LHV and composition
 - Not yet fully automatic operation
 - Blockages of gasifier, boiler and ash-handling
 - Broken thermal expansion joints

Plant view

Results

Indexed effects

TKI-toeslag project ESKAGAS

- Applied research project of ECN and ESKA, funded by TKI-BBE and ESKA
- The project focuses on options for valorization of the product gas of the paper rejects gasifier by co-production of high value products
- Quantification and value analysis of the co-products, their impact on the ESKA case and coproduction routes are subjects in the ESKAGAS project
- The research results of this project can be used for other gasification technologies and projects, like the projects in Alkmaar (SCW, Ambigo) or Amsterdam (Blue Planet)
- Co-production is possibly the next step for these projects to prove that sustainability and value can be further increased

Measurements at ESKA CFB

- Measurements taken by ECN on March 20th and 21st 2018
- Sampling point at CFB gas outlet
- Online gas monitors
- Micro-GC and tar guideline method

Measurements at ESKA CFB

Main gas components,	March 20	March 21
dry basis (vol%)		
СО	5.4	6.3
H ₂	5.2	2.8
CO ₂	15.5	14.7
CH ₄	3.4	2.6
N_2	66.1	n.m.
C_2H_2	0.1	n.m.
C_2H_4	2.4	n.m.
C_2H_6	0.1	n.m.
Benzene	0.8	n.m.
Toluene	0.1	n.m.
Ar	0.8	n.m.
Total	99.9	n.m.
H ₂ O (wt%)	38	26

- CFB operated at moderately high ER: high concentration of N₂ and CO₂
- Despite high ER almost 1 vol%
 B+T and relatively low amount of
 C₂ for waste gasification

Measurements at ESKA CFB

March 20	March 21
228	196
251	302
67	84
0	0
52	n.m.
37	20
5	6
0.26	0.13
3	3
17	12
	228 251 67 0 52 37 5 0.26

- H₂S and COS in approximately same ratio
- Relatively low amount of C₃ C₆

Valorization route & lab-experiments

- Product gas composition (High BTX, high N₂, rel. low C₂-C₆)
- Catalytic routes towards biofuels is less favorable
- C₂ to aromatics could yield an additional ±1 vol% BTX for co-production
- BTX co-production selected as viable route in case of ESKA
- Successful lab-scale experiment at ECN, using the same reject but different gasification and gas cleaning technology (MILENA – OLGA – BioBTX), conducted on May 2nd
- BTX separation efficiency: 98-99%
- BTX production: ±40 g/kg/h reject (dry basis)
- Extrapolated potential value in case of ESKA >400 k€ per year

Conclusions

- ESKA has proven that they can close their cycles by converting paper recycling residues into energy for own use
- The dependency of market driven prices for energy and residues is reduced
- Subsidy-free gasification plant is economically feasible
- Considering the challenging feedstock, the system operates very well
- Co-production of BTX from a direct gasifier seems (technically) feasible
- It indicates that (at sufficient scale) sustainability and value can be further increased

Questions?