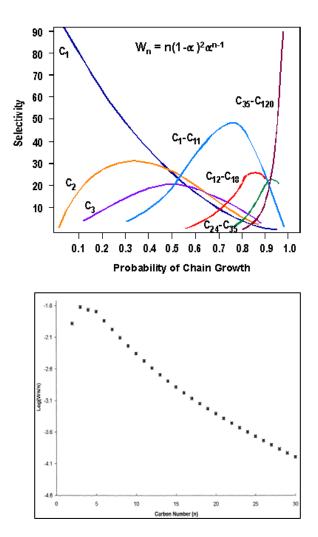


May 25th, 2015. Aviation Biofuels Workshop, Trondheim

FT-Catalysts for Aviation Fuel from Biomass

Rune Myrstad Research Scientist Oil and gas process technology SINTEF Materials and Chemistry



Fischer-Tropsch Synthesis

- Polymerisation reaction
 - Product distribution determined by chain growth probability, α
 - α depends of catalyst and reaction conditions

Influence of FT operating conditions on product selectivity						
Selectivity parameter	Operating parameter being increased					
	Temperature	Pressure	Space velocity	H ₂ :CO ratio		
Carbon number distribution	Lower <i>a</i> -value	Higher <i>a</i> - value	No change ^a	Lower <i>a</i> -value		
Methane selectivity	Increases	Decreases	Decreases	Increases		
Syngas conversion	Increases	Increases	Decreases	complex		

- In practice, deviation from "ideal" weight distribution as α changes with carbon number
 - Related to secondary reactions of olefins (chain length dependant)
 - α deviations depends on catalyst and reaction conditions

Fischer-Tropsch Catalysts

- Co- or Fe-based catalyst
- Supported (i.e. Al₂O₃, TiO₂, SiO₂) or unsupported
- Promoters affecting activity, selectivity and stability

Common promoters

- Co-catalysts
 - Re, Mn
- Fe-catalyst
 - Cu, K, Zn

Increased catalyst activity and supressed methane formation


Parameter	Co catalyst	Fe catalyst	
Operating temperature	190-240 ℃ Used only in LTFT reactors High temperature increases CH ₄ selectivity and causes catalyst deactivation	200-350 °C. Operates both in HTFT and LTFT reactors	
Feed gas	Syngas with $\rm H_2:CO$ ratio in the range of 2.0–2.3, due to very low WGS activity	Flexible H_2 :CO ratio in the range 0.5–2.5, due to high WGS activity	
Activity	More active at higher CO conversions i.e., lower space velocities	More active than Co at higher space velocities	
Product spectrum	Primary products are n-paraffins with marginal production of α -olefins Higher paraffin/olefin ratio α =0.85-0.92	Primary products are n-paraffins with considerable production of α - olefins Lower paraffin/olefin ratio α =0.65-0.92	
Operating plants	Shell Middle Distillate Synthesis, Oryx-GTL facility-Sasol	Sasol Slurry process (LTFT), Sasol-SAS (HTFT), Mossgass facility	
Promoters	Noble metals (Ru, Rh, Pt, Pd); Oxide promoters (ZrO_2 , La_2O_3 , CeO_2)	Alkali metals (Li, Na, K, Rb, Ca)	
Life & cost	Longer life time, more expensive	Lower life time, less expensive	

Renewable and Sustainable Energy Reviews 58 (2016) 267-286

In situ hydrocracking

- Upgrading of FT-wax commonly performed *ex situ* by hydrocracking
- Extensive studies in literature on *in situ* hydrocracking. Combinations of Co- and Fe-catalyst with zeolites as mixed or bi-functual catalysts are investigated
- + Selectivity control possible
- Zeolites deactivates much faster than FTS-catalyst

Current BTL installations

BTL installations.

TL installations.						
Organization	Year	Gasifier	Scale	Details		
Solena Fuels, Green Sky (Essex, UK)	2015	Solena plasma gasification	Commercial • 1157 bpd jet fuel • Co catalyst • Velocys micro-channel reactor	 Municipal & commercial waste 		
Red Rock Biofuels (Oregon, USA)	2017	TRI steam reformer	Commercial • 460 t/d biomass feed • 1100 bpd liquid fuel • Co catalyst • Velocys reactor	• Forest & saw mill waste		
Sierra Biofuels, Fulkrum Bio-energy (Nevada, USA)	2016	TRI steam reformer	Commercial • 400 t/d MSW feed • 657 bpd liquid fuel • Co catalyst • Velocys reactor	 Municipal solid waste 		
SYNDIESE, CEA (Nevada, USA)	2015	Entrained flow, O ₂ blown, high pressure gasifier	Commercial	 Forest & agricultural waste 205 t/d biomass feed 530 bpd liquid fuel 		
CHOREN, [183,184] Sigma Plant (Freiberg, Germany)	2010	Carbo-V gasification	Commercial • 5000 bpd liquid fuel • Co catalyst • Fixed bed reactor • temporarily discontinued	• 3044 t/d dry biomass		
Velocys [185] (Gussing, Austria)	2010	Dual Fluidized bed gasifier	Pilot • 1 bpd FT products • Micro channel reactor • Co catalyst	• 150 t/d dry biomass		
CUTEC [185] (Germany)	2010	CFB, steam-O ₂ gasification	Laboratory • Fixed bed, Co catalyst • 2500 hours of gasifier operation • 900 hours of FT operation • 150 ml/day FT products	• 2.7 t/d dry biomass		

Renewable and Sustainable Energy Reviews 58 (2016) 267-286

GAFT: SP3 Fischer-Tropsch Synthesis

The major objective of SP3 is to demonstrate an iron based medium to high temperature FT technology for the production of liquid biofuels

Background

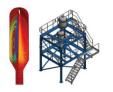
- EF of biomass yields synthetic gas with H_2 :CO ≤ 1
- For FTS ideally H₂:CO ≈ 2, achieved by WGS step after EF (CO + H₂O ↔ CO₂ + H₂)
 For H₂:CO = 2, Cobalt based catalysts normally preferred, maximising wax yield before

cracking into diesel fraction

Co based FT catalysts, low tolerance for impurities (catalyst poisons) in synthetic gas

H₂:CO adjustment avoided by use of Fe-based catalysts (intrinsic WGS activity)
 Eliminate a process step

> Fe based FT catalysts, higher tolerance for impurities in feed gas


• Fe-based FTS, typical > 300 °C, yielding light hydrocarbons and chemicals

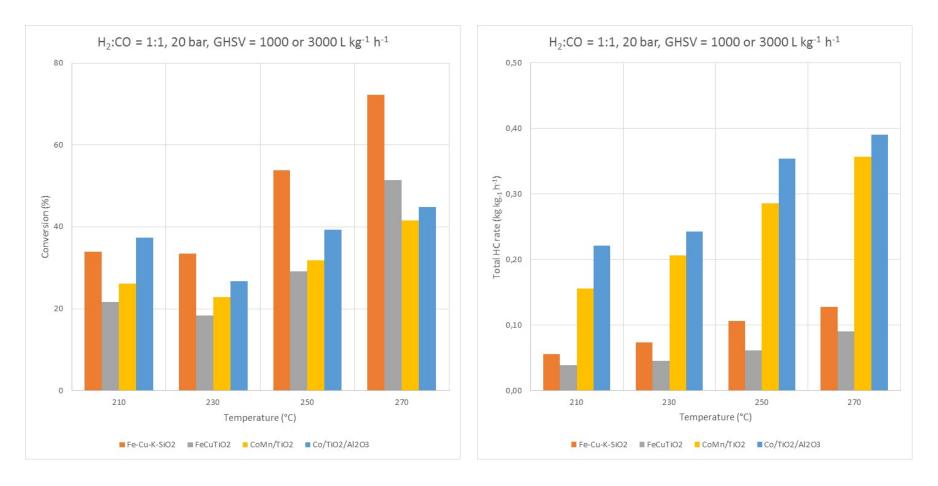
GAFT: Fe based medium to high temperature FTS (240 – 270 °C)

- Aims to tune product into diesel range
- Simplified product upgrading (eliminate cracking step?)
- Promoted Co-based catalyst included in screening phase (after discussions with JM)

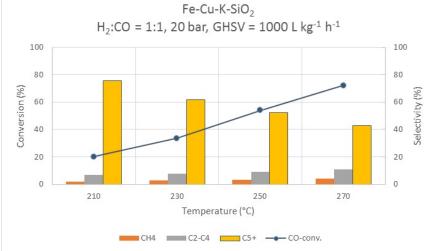
GAFT SP3 Fischer-Tropsch Synthesis

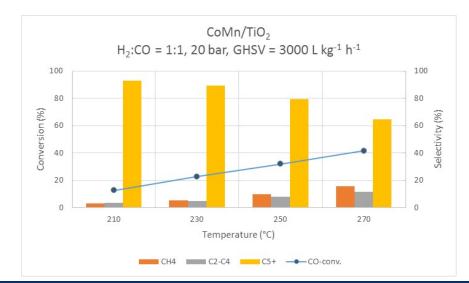
GAFT Gasification and FT-Synthesis of Lignocellulosic Feedstocks

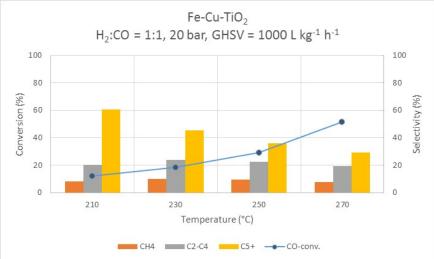
Experimental

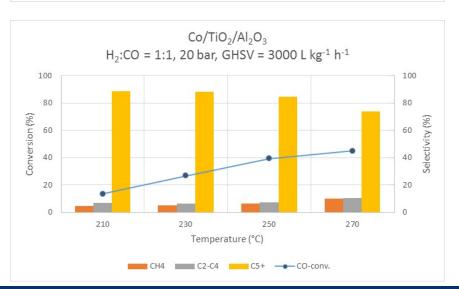

- 4 parallel Fixed-bed reactors, ¹/₂" o.d, ca. 30 cm long
- Currently, on-line GC for light gases. GC for wax analyses are in progress.
- Preliminary results from 4 catalysts
 - Fe-Cu/TiO₂
 - Fe-Cu-K/SiO₂

- Diluted with SiC
- Co/TiO₂/Al₂O₃
- CoMn/TiO₂
- H₂:CO = 1.0, H₂:(CO+CO₂) = 1.7 (with 0 and 5 % CO₂) and H₂:CO = 2.1
- 20 bar, 210-270 °C



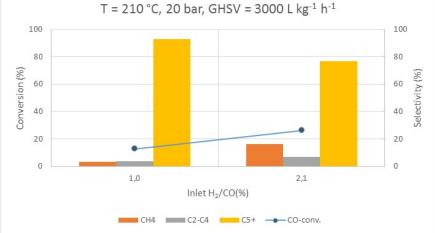

Effect of Temperature on CO-conv. and Total Hydrocarbon-rate, H₂:CO=1

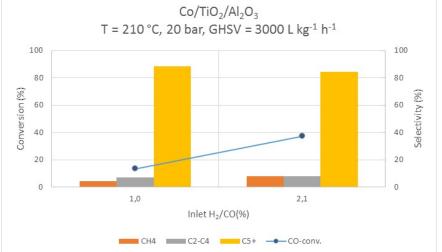




Effect of Temperature on CO-conv. and selectivity, H₂:CO=1

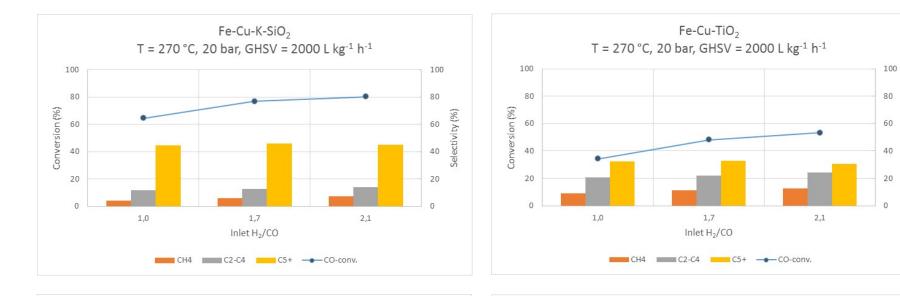


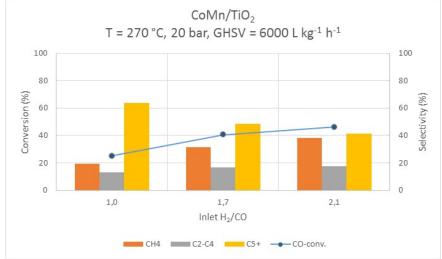


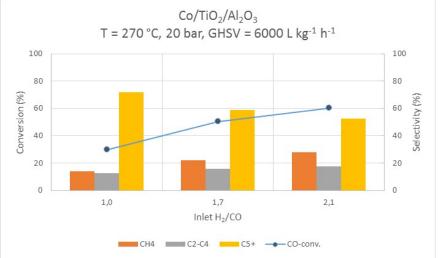


Ę

Effect of inlet H_2/CO on CO-conv. and selectivity, 210 °C

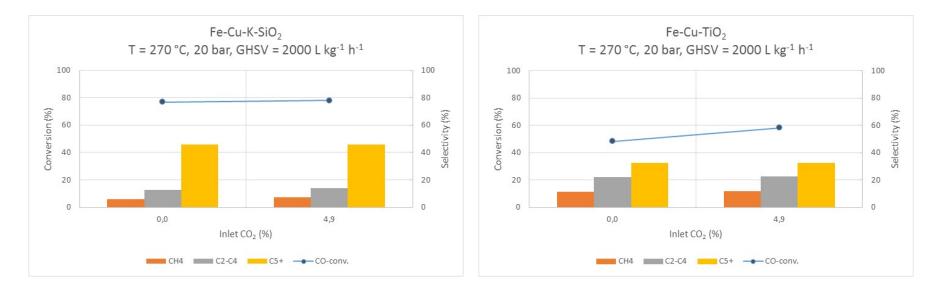


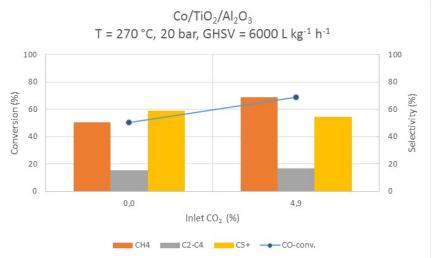




Ļ

Effect of inlet H_2/CO on CO-conv. and selectivity, 270 °C



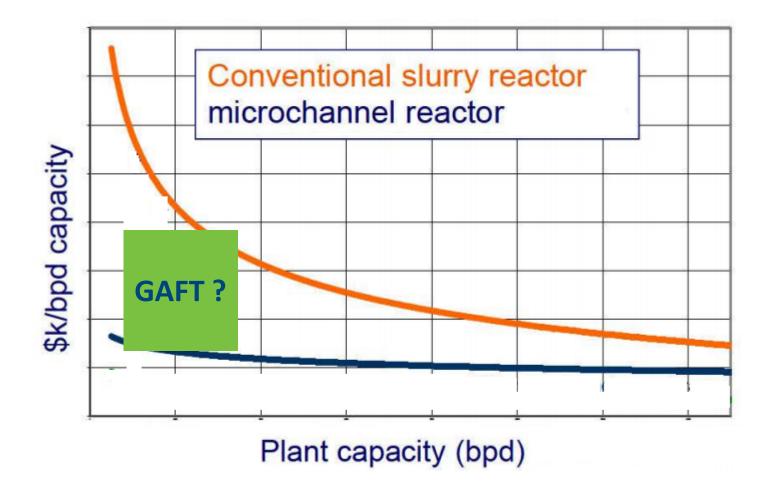

Ļ

Selectivity (%)

Effect of inlet 5% CO₂ on CO-conv. and selectivity, 270 °C

Ļ

Summary and further work


- From the Fe catalysts, Fe-Cu-K-SiO₂ most promising
- Both Co-catalysts interesting performance and apparently better selectivity picture than the Fe catalysts.
- Considering to include some supported Fe-catalysts
- Modified versions of the Co-catalysts are upcoming
- Tests with higher (up to 20%) CO₂-content and low H₂:CO to be performed on selected Fe and Co catalysts
- Analyses of wax fractions is prerequisite to conclude upon catalyst choice
- Further process conditions to be included on selected catalyst(s)

THANK YOU!

Estimated microchannel benefits at low plant capacity

Microstructured reactors in GAFT

- Catalyst screening and effect of process conditions will be performed in fixed-bed reactors (due to capacity and ease of operation)
- Microstructured reactor successfully tested in lab with Co-based catalysts
- Microstructured reactor might be tested with 1-2 catalysts towards end of WP 3.1.
- Data from WP 3.2 could give input to microstructured reactor performance

