Renewable Natural Gas from Carbonaceous Wastes via Phase Transition CO₂/O₂ Sorbent Enhanced Chemical Looping Gasification

Jian Dou, Sunkyu Park, Stephen Kelley, and Fanxing Li (PI)

North Carolina State University

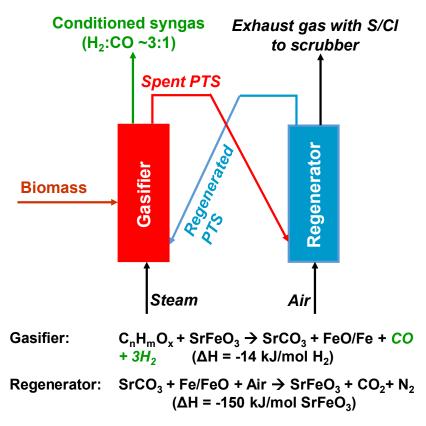
Project Partners: NCA&T and PSRI

Outline

Background

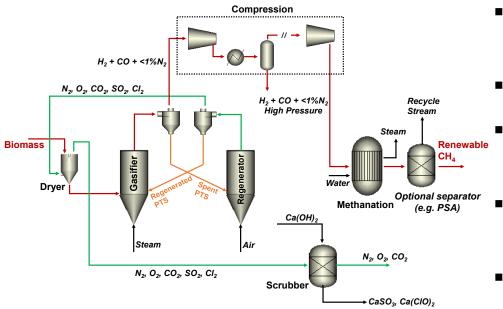
- Preliminary Data
- Project Objectives and Tasks
- Market Transformation Plan
- Collaborations

Biomass Waste to Renewable Energy


2016 BILLION-TON REPORT

Advancing Domestic Resources for a Thriving Bioeconomy

Volume I | July 2016


- Renewable energy mitigates global climate change
- More than 40 million dry ton biomass available every year¹
- Conventional anaerobic digestion encounters problems of incomplete conversion of feedstock
- State-of-the-art partial oxidation gasifier suffers from high capital and energy cost for air separation

Sorbent-Enhanced Chemical Looping Gasification (SE-CLG)

- Intensified sorbent enhanced chemical looping Gasification (SE-CLG) using circulating fluidized bed
- SE-CLG integrates together biomass gasification, air separation, and syngas conditioning and cleaning
- Production of syngas with H₂/CO ratio of 3:1, ready for methanation
- >35% reduciton in LCOE comparing to indirect steam gasification

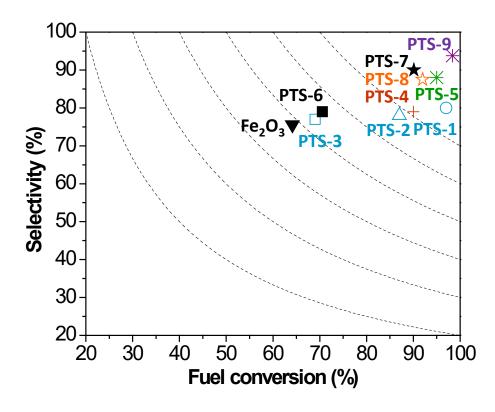
Sorbent-Enhanced Chemical Looping Gasification (SE-CLG)

- Mixed oxide phase transition sorbent (PTS) for biomass gasification
- Particles fluidized by steam
- PTS donates lattice oxygen to oxidized biomass to H₂, CO, along with steam, CO₂
- PTS reduced to alkaline oxide and metal/metal oxide
- Alkaline oxide (i.e., CaO) absorbs CO₂ to form carbonate, and absorbs contaminants to form CaS, and CaCl₂

Reactions in SE-CLG Process

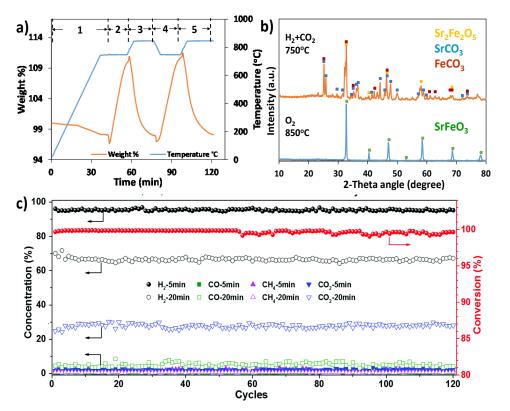
Unit	Key Reactions (SrFeO ₃ is used as a simplified PTS example)		
Gasifier	$4SrFeO_3 \rightarrow 2Sr_2Fe_2O_5 + O_2$		
	Biomass + $Sr_2Fe_2O_5 + O_2 \rightarrow CO + H_2 + CO_2 + H_2O + SrO + FeO + Fe$ + $SrS/SrCl_2/FeS/FeCl_2$		
	$CO + H_2O \leftrightarrow CO_2 + H_2$ $CO_2 + SrO \rightarrow SrCO_3$		
	$NH_3 + FeO \rightarrow Fe + N_2 + H_2O$		
Regenerator	$SrCO_3 + FeO + Fe + SrS/FeS/SrCl_2/FeCl_2 + O_2 \rightarrow SrFeO_3 + CO_2 + SO_2 + Cl_2$		
Methanation unit	$CO + 3H_2 \rightarrow CH_4 + H_2O$		
Scrubber	$Ca(OH)_{2} + SO_{2} \rightarrow CaSO_{3} + H_{2}O$ 2Ca(OH)_{2} + 2Cl_{2} \rightarrow CaCl_{2} + Ca(ClO)_{2} + 2H_{2}O		

PTS is the key to biomass gasification and syngas cleaning and conditioning

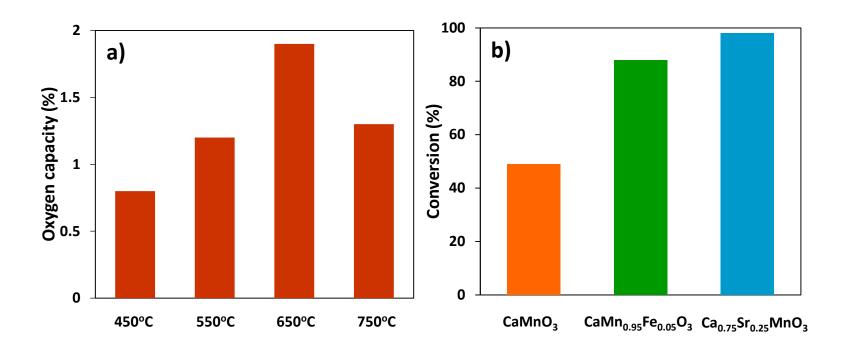

SE-CLG vs Indirect Steam Gasification vs Anaerobic Digestion

	AD	SG	SE-CLG
Status	Mature	Developing	Developing
Capacity	Small	Large	Large
Biomass conversion	Low	High	High
Contaminants and CO ₂ content	High	High	Low
Air separation Unit	N.A.	Required	Not required
Syngas cleaning and conditioning	Required	Required	Not required
H ₂ /CO ratio	N.A.	<2:1	3:1
Methanation	Not required	Required	Required

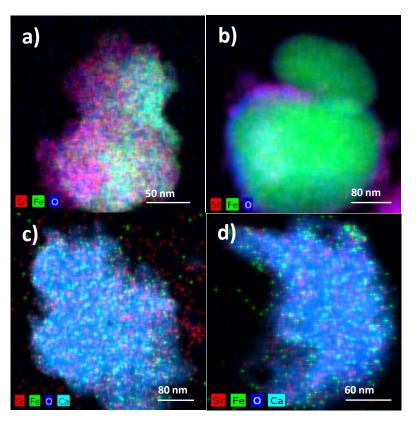
Outline


- Background
- Preliminary Data
- Project Objectives and Tasks
- Market Transformation Plan
- Collaborations

PTS Design-Methane Conversion and Syngas Selectivity


- PTS sorbents effectively donates lattice oxygen to convert methane into syngas
- Integration of air separation with gasification
- CaO modified SrFeO₃ sorbents and BaMn_xFe_{1-x}O₃ sorbents with up to 90% syngas yield

PTS Design-CO₂ Sorption and Release


- *in-situ* syngas conditioning via CO₂ sorption
- SrFeO₃ donates its lattice oxygen in the presence of a H₂ and CO₂ mixture
- Reversible CO₂ uptake and release via formation of SrCO₃ and FeCO₃ in H₂/CO₂, and regeneration of SrFeO₃ in air
- Ca_{0.5}Co_{0.5}O PTS effectively conditioned syngas produced from glycerol to increase H₂:CO ratio from 1.8:1 to 20:1

PTS Design-Spontaneous Oxygen Release

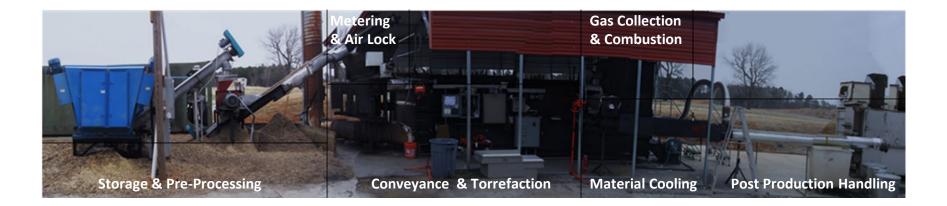
- Kinetics for biomass gasification is critical to determine reactor sizing and capital cost
- Phase transition of SrFeO_{2.5} to SrO/SrCO₃ and Fe is ideal for syngas generation
- PTS like SrFeO₃ has significant amount of O₂ release capacity (0.8-1.9 w.t.%) at 450-750°C
- PTS increases char gasification kinetics by an order of magnitude comparing to steam gasification alone

PTS Design-Stability

- Develop PTS with excellent chemical and physical stabilities for fluidized bed operation
- Improve PTSs's physical stability by adding support and/or binding materials
- CaO enhances well dispersion of Fe in the PTS oxide, allowing facile and reversible phase transitions with good stability

Outline

- Background
- Preliminary Data
- Project Objectives and Tasks
- Market Transformation Plan
- Collaborations


Project Objectives

- Develop phase transition sorbents (PTSs) for biomass gasification with integrated air separation and CO₂ sorption
- Demonstrate ash and contaminants resistance of PTS for C&D waste and poultry litter feedstock
- Design, construction and demonstration of 5 kW CFB gasifier to produce clean and conditioned syngas from biomass
- Validate >35% reduction in LCOE comparing to steam gasification process

Technical Approach

- Year I: Collect, characterize, and pretreat biomass waste feedstocks. Design, characterize and optimize PTS for SE-CLG. Perform preliminary process and cost analysis.
- Year II: Demonstrate robustness of PTS for various biomass wastes including poultry and C&D wastes. Design and construct a 5 kWth CFB based SE-CLG gasifier.
- Year III: Synthesize 20 kg batches of PTS sorbents. Demonstrate a 5 kW_{th} CFB to produce methanation ready syngas for 100+ hours. Perform detailed techno-economic and life cycle analyses.

Biomass Waste Characterization and Pretreatment

- Feedstock characterization and handling is critical for biorefinery.
- characterize the woody and poultry litter feedstock to determine solid, volatile, moisture, and ash contents as well as elemental composition.
- Pretreat feedstock by torrefaction to reduce moisture content, increase carbon content, decrease grinding energy, and enhance flow properties in CFB gasifier.

Milestone: Collect consistent and representative biomass waste feedstocks and characterize their key properties for thermochemical conversion; Determine the effect of pretreatment on the feedstock.

Phase Transition Sorbent Design, Characterization, and Testing

- Preliminary studies have already resulted in a number of promising PTSs
- Investigate redox kinetics of PTSs under reducing and oxidizing conditions, followed by optimization through doping and/or secondary phase addition
- Improve PTSs' CO₂ uptake/release rates and sorption capacities by incorporation of alkaline earth or alkali metal cations and/or tuning the strength of interactions between alkaline earth metals and transition metal oxides
- Tailor PTSs' composition and structure for spontaneous oxygen release to improve gasification kinetics
- Stability of PTSs in the presence of contaminants and ash will also be established.

Milestone: Develop PTSs showing >95% methane conversion while producing syngas with H_2/CO ratio >2.5 and < 5% degradation over 50 cycles in the presence of ash and contaminants.

Scale up Synthesis of Phase Transition Sorbents

- Prepare PTS particles at 1 kg/batch scale using scalable methods such as solidstate reaction method at NCSU or spray-dry method through collaborations with VITO
- Evaluate PTS particles in the lab scale fluidized bed reactor and optimize PTS composition
- Synthesize larger batches of PTS particles at 20 kg/batch based on optimized PTS composition
- Validate the reactive and hydrodynamic properties as well as attrition resistances of PTS particles prior to operation of the gasifier.

Milestone: Synthesize PTS particles with a scalable method and showing <5% activity degradation and <1 wt.% attrition over 24 hrs; Prepare two 20 kg batches of PTS particles.

SE-CLG of Biomass Wastes

- Evaluate PTSs with biomass feedstocks to validate their performance and stability under an operational environment
- Characterize PTSs before and after gasification using the lab-scale fluidized bed
- Optimization of the sorbents to improve biomass conversion kinetics, enhance the H₂/CO ratio in the syngas products, and reduce tar and other contaminants in the syngas product stream
- Investigate the effect of contaminants (i.e., S and Cl) to validate the PTS particles' robustness
- Demonstrate stability of PTSs in the lab scale fluidized bed for 24 hours under a cyclic redox mode with the injection of biomass waste particles.

Milestone: Develop PTSs showing >95% biomass waste conversion and <5% degradation in activity and <1 wt.% attrition over a 24 hour testing period in a labscale fluidized bed.

Circulating Fluidized bed (CFB) Gasifier Design and Construction

- Design and construct a 1:1 scale cold model of the 5 kW_{th} unit through collaboration with PSRI.
- Operate cold model with model glass beads and inert gases to validate the design
- Design CFB gasifier based on the finalized cold model
- Fabricate CFB hot model components at PSRI
- Assembly CFB hot model at NCSU

Milestone: Complete the construction of the CFB gasifier hot unit.

Shakedown and Operation of the 5 kW_{th} Gasifier

- Test CFB gasifier with inert simulants at room temperature to validate the reactor hydrodynamics and operability
- Operate gasifier at high temperature using inert fluidization gas
- Demonstrate SE-CLG process using PTS particles and biomass powders
- Validate methanation step based on syngas composition from CFB gasifier

Milestone: 100 hrs CFB demo with >95% biomass conversion to syngas (H_2 :CO ratio >2.5); methanation of the syngas to >95% CH₄.

Comprehensive Techno-economic and Life Cycle Analyses

	Baseline	SE-CLG			
Biomass processing rate (MW _{th})	462.7 (MW _{th} , HHV)				
CH ₄ production rate (MW _{th} , HHV)	215.5	275.7			
Capital Costs (in Millions, 2007 \$)					
Gasifier	43.3	43.3			
Tar reforming/quench	26.9	n.a.			
Scrubbing	28.5	10.4			
Compression	32.5	30.1			
methanation	33.1	33.1			
power generation	22.9	24.7			
cooling water/utilities	9.6	5.7			
Total installed cost	196.8	147.3			
Land, site, contingency	133.2	100.2			
Working Capital	16.4	12.3			
Total Capital Cost (TCI)	346.5	259.8			
Operating Costs (million \$/year)					
Biomass cost	10.5	10.5			
Catalyst cost	3.8	1.9			
PTS particle cost	0.0	1.9			
Other raw materials	0.4	0.4			
Waste disposal	0.5	0.5			
Fixed cost	18.6	14.8			
Total Operating Cost	33.8	30.0			
Levelized Cost of Energy Calculation (in Millions, 2007 \$)					
Annualized financing cost	30.5	22.9			
Total annual cost	64.3	52.9			
Discounted cost over 30 years	520.2	427.6			
Discounted energy production (GJ)	52756897.1	67474315.0			
LCOE (\$/GJ)	\$9.86	\$6.34			

- Develop Aspen model and Excel-based economic model based on the experimental results to optimize the proposed process.
- Quantify the impacts of uncertainty and identify scenarios with minimum financial risks using Monte Carlo simulation
- Perform LCA using system boundaries including waste collection and transportation, RNG production, and use in commercial trucks
- Integrate results of TEA and LCA into a Cost Benefit Analysis framework to understand the trade-offs between economic attractiveness and environmental benefits

Milestone: Confirm 35% LCOE reduction and >10 EROI using the 5 kW_{th} CFB data.

Outline

- Background
- Preliminary Data
- Project Objectives and Tasks
- Market Transformation Plan
- Collaborations

Market Transformation Plan

- RNG cost from SE-CLG technology including byproduct (i.e., fertilizer via chicken litter pretreatment and electricity co-product) credits is estimated as \$2.39/mmBtu, competitive to conventional natural gas prices
- Aim to either enter a joint technology development agreement with commercial partners (candidates include Duke Energy and Aries Clean Energy) or license out the technology
- Demonstrate auto-thermal, long term operation of the SE-CLG gasifier (4 7 year timeline) prior to full-scale commercialization

Outline

- Background
- Preliminary Data
- Project Objectives and Tasks
- Market Transformation Plan
- Collaborations

Collaborations

Particulate Solid Research. Inc.

Related References

- 1. Zhang, J.; Haribal, V.; Li, F. Sci. Adv. 2017, 3, e1701184.
- 2. Haribal, V. P.; He, F.; Mishra, A.; Li, F. ChemSusChem **2017**, *10*, 3402.
- 3. Galinsky, N.; Sendi, M.; Bowers, L.; Li, F. Applied Energy 2016, 174, 80.
- Dang, C.; Li, Y.; Yusuf, S. M.; Cao, Y.; Wang, H.; Yu, H.; Peng, F.; Li, F. *Energy Environ. Sci.* 2018, 11, 660.
- 5. Ou, L.; Kim, H.; Kelley, S.; Park, S. Biofuels, Bioproducts and Biorefining **2018**, *12*, 442.
- 6. Galinsky, N. L.; Shafiefarhood, A.; Chen, Y.; Neal, L.; Li, F. Appl. Catal. B 2015, 164, 371.
- 7. Li, F.; Luo, S.; Sun, Z.; Bao, X.; Fan, L.-S. *Energy Environ. Sci.* **2011**, *4*, 3661.
- 8. He, F.; Linak, W. P.; Deng, S.; Li, F. Environ. Sci. Technol. 2017, 51, 2482.
- 9. Shafiefarhood, A.; Zhang, J.; Neal, L. M.; Li, F. J. Mater. Chem. A 2017, 5, 11930.
- 10. Neal, L. M.; Shafiefarhood, A.; Li, F. ACS Catal. 2014, 4, 3560.
- 11. Park, J.; Meng, J.; Lim, K. H.; Rojas, O. J.; Park, S. J. Anal. Appl. Pyrolysis **2013**, 100, 199.
- 12. Meng, J.; Park, J.; Tilotta, D.; Park, S. *Biores. Technol.* **2012**, *111*, 439.
- 13. Yao, Y.; Graziano, D. J.; Riddle, M.; Cresko, J.; Masanet, E. *Environ. Sci. Technol.* **2015**, *49*, 14704.
- 14. Yao, Y.; Graziano, D.; et al. Curr. Opin. Chem. Eng. 2014, 6, 90.

NC STATE UNIVERSITY

Acknowledgement

Sunkyu Park (co-PI), Stephen Kelley (co-PI), Yuan Yao (co-PI)

NCA&T: Lijun Wang (co-PI)

PSRI: Ben Freireich (co-PI)

NCSU:

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Thank you!

