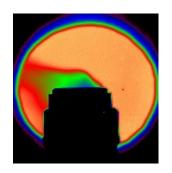
KIT, Karlsruhe, 06-06-2019| Workshop: Gas cleaning, experiences, new developments, analytics and diagnostics

On line UV/IR measurements of tars and other gas compounds

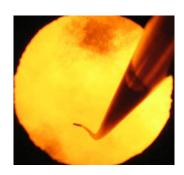
Alexander Fateev, Senior Scientist DTU Chemical Engineering

e-mail: alfa@kt.dtu.dk

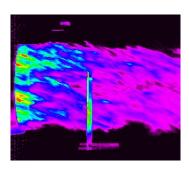
DTU Chemical Engineering | Optical Diagnostics Group



Activities


Emission from surfaces

Heat transfer, energy balance in solids


Leak valve bottle

IR gas/particles fast imaging with LED

Extractive/in situ/on line

Gas composition, (non-contact) gas/particle temperature, RHT modeling in gases

Exhaust aircraft engine

Mixing, flows and properties

At one glance:

- ☐ Two men show: Alexander Fateev and Sønnik Clausen, both Senior Scientists (Risø National Lab, then DTU)
- □ A track record in harsh industrial measurements: power plants, waste incinerators, ship/aircraft engines
- □ A track record in collaboration with industry in DK, SE, DE (energy, bio-medical, environment)
- ☐ Participation in various national and EU-funded projects
- ☐ Instrumentation: gas cells (<1500C), spectrometers: from 120 nm (far UV) to 20 cm⁻¹ (far IR)
- □ Spectroscopic (HITRAN/HITEMP/ExoMol) databases validation/development/spectra modeling
- ☐ Sensor development (NG quality (C1-C5), wood stoves (soot, PAH), fast particle imaging with LED's)

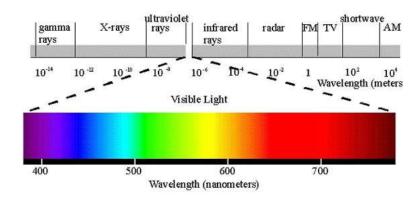
Outline

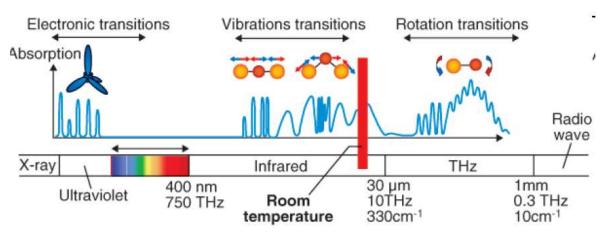
Not fancy at all: broadband Optical Absorption Spectroscopy/DOAS

- ☐ Choice of spectral range: IR vs UV/far-UV
- ☐ Re-born of oldies: VUV as far-UV without vacuum: a practical approach

In the lab:

- ☐ gas cells for wide-range of P/T's: 20-1500C/1-200bar
- □ temperature-dependent Absorption Cross-Sections Databases or line-lists databases


In the field:


- ☐ From 100kW to 6MW gasification
- Measurements in stack gases (combustion)

Conclusions

Choice of spectral range: depends on...

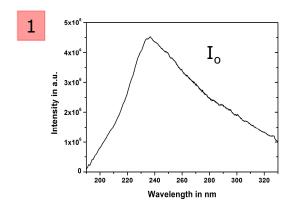
IR (MIR: 600-8000cm-1):

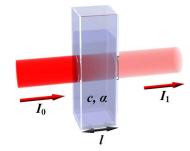
- Classic tool for H2O, CO2 and HxCy+
- Databases available (HITRAN, PNNL)
- in situ or on-line measurements

UV (200nm $<\lambda$):

- superb sensitivity for (complex) organics
- (very) strong light absorption
- <u>in situ</u> or <u>on-line</u> measurements

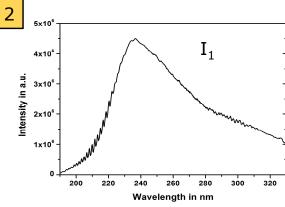
Special for gasification: no O₂

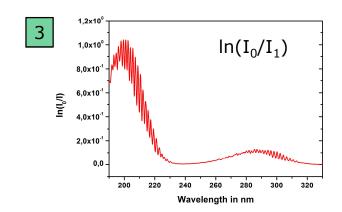

- \square possibility to go further down (120nm< λ): far-UV
- superb sensitivity for major/minor gas components
- compact system
- ☐ in situ or on-line measurements

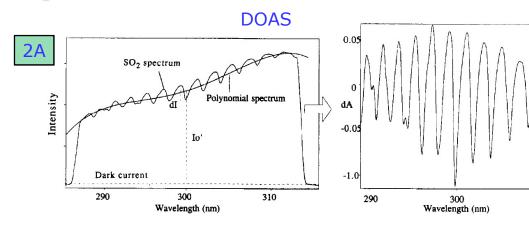

Optical Absorption Spectroscopy/DOAS

310

Spectrum w/o absorption

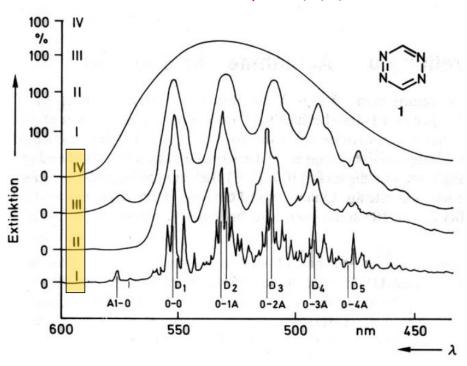



Lambert Beer Law:


$$\frac{I_1}{I_0} = e^{-\alpha \cdot l} = e^{-\sigma \cdot N \cdot l}$$

$$\ln \frac{I_0}{I_1} = \sigma \cdot N \cdot l$$

Spectrum with absorption



Choice of medium

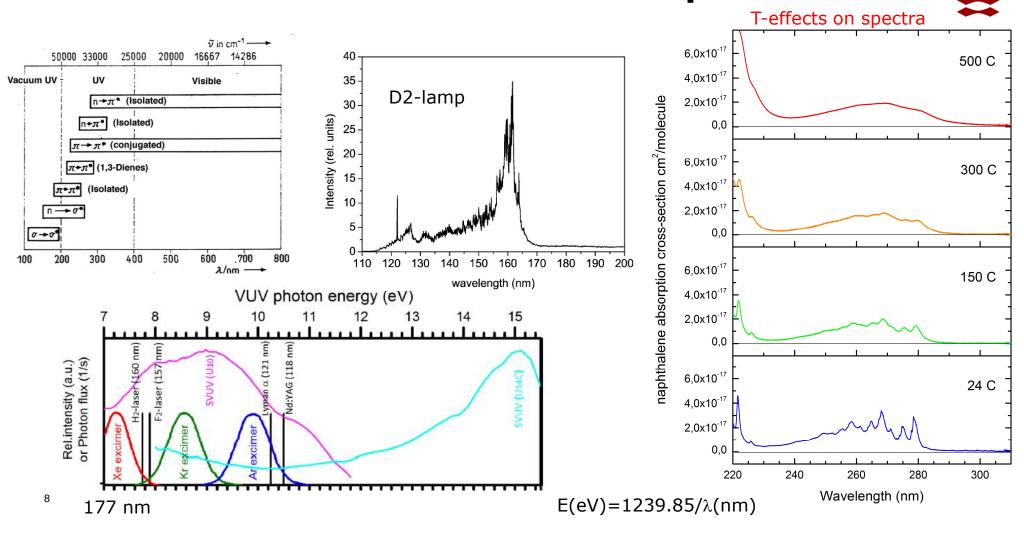
Example: 1,2,4,5-tetrazine

Gas phase, room temperature
In isopentane-methylcyclohexane matrix, 77K
In cyclohexane, room temperature
In water, room temperature

- ☐ Molecules have their own "fingerprints" in IR/UV
- ☐ Vibrational fine structure disappears in solutions but not in the gas phase
- ☐ Fine structure degrades with temperature

Re-born of oldies: VUV as far-UV

• Classical VUV definition: λ < 200 nm (when O2 absorption matters) 4 main "-":

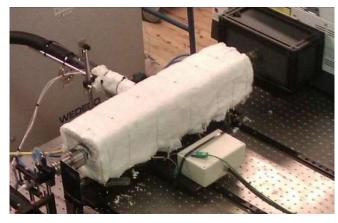

forced use of HV-pump light source availability (synchrotron the best) spectrometer/optics performance drop at $\lambda < 110$ nm windowless system design (i.e. coupled system)

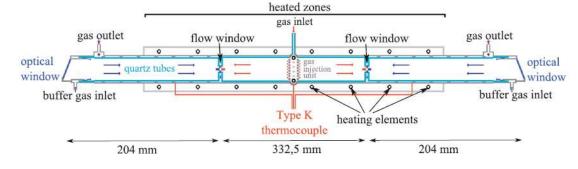
• Far UV definition: 110 nm $< \lambda$ (defined by MgF2 cut off) 4 main "+":

MgF2: good robust optical material (H2O/T) (i.e. de-coupled system)
No need for use HV-pumps: N2 or Ar purge is enough
VUV D2-lamp: affordable light-source with good *costs:performance* ratio transportable system (flight-case scenario) for lab/field measurements

• Rydberg state spectroscopy below ionization limit large absorption cs (i.e. short absorption pathlengths)

Re-born of oldies: VUV as far-UV in pictures


Experimental facilities

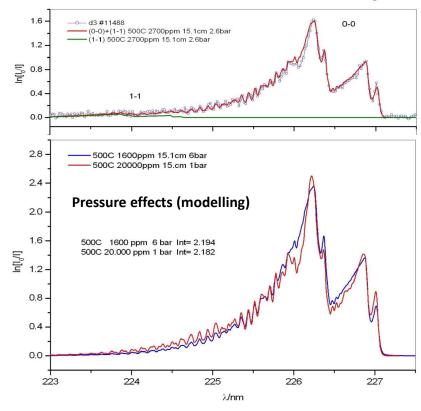


- ✓ High Temperature Gas Cell (max 1600C): CO, O2, NO, CO2, H2O, CH4,...
- ✓ Quartz Gas Cell for reactive gases (max 525C): NH3, SO3, SO2, PAH (phenol, naphthalene),...
- ✓ 0.39 cm, 5.1 cm (max 300C), 50cm, 1m, 5.7 m (max 200C) gas cells for lab/field measurements

Replaceable outer windows:

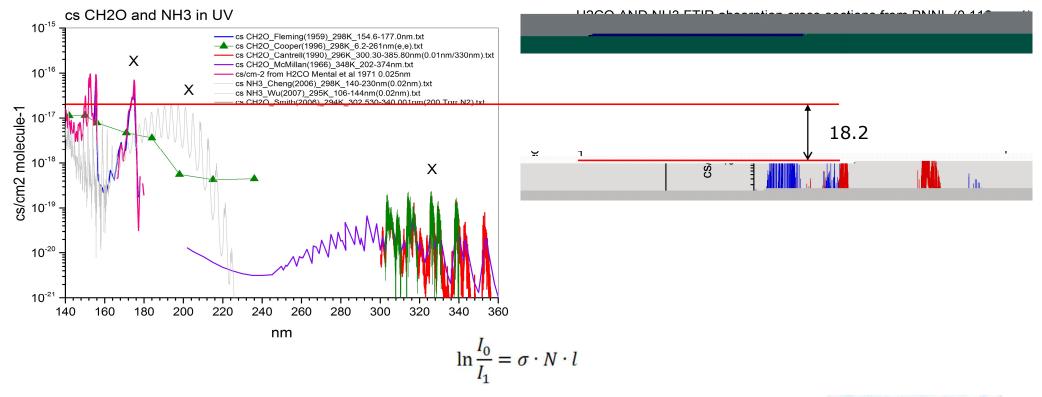
- no reactive gas contact with windows
- ☐ far UV to μw coverage

Experimental facilities: special case


high-pressure (up to 1000°C)/high pressure (up to 200 bar) flow gas cell

- sapphire windows:
- ☐ far UV to mid IR: CO2, CO, O2, NO, H2O

UV NO band:


fast in situ measurements (blue) vs. modelling (red)

Spectroscopy of NH3 and H2CO

What shall I choose: far UV, UV or IR?

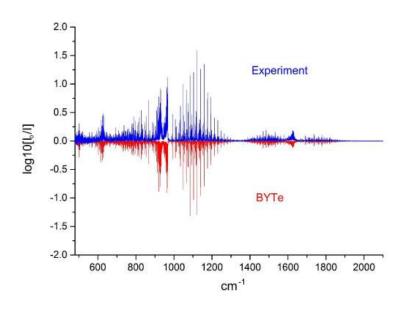
l in cm/mm or meters?

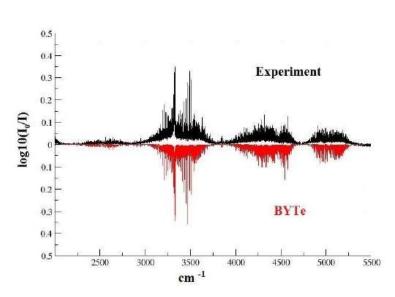
IMPRESS 2: **Metrology for Air Pollutant Emissions**

IR spectroscopy of NH3

Modelling High Resolution Absorption Spectra with ExoMol Line Lists: NH₃ and CH₄

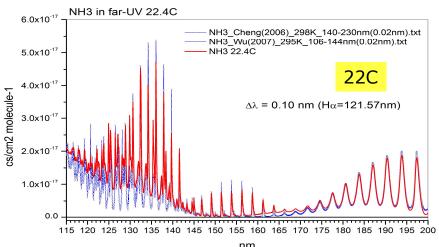
E. J. Barton¹, S. N. Yurchenko¹, J. Tennyson¹, S. Clausen² and A. Fateev²

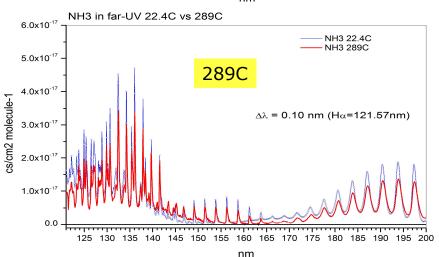

¹Univerity College London, Gower Street, London WC1E 6BT

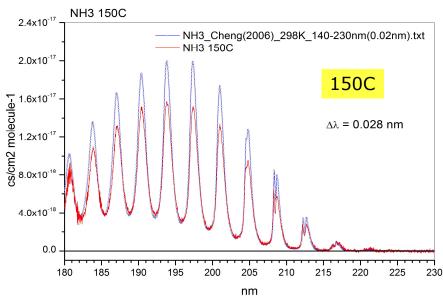

ical University of Departs (DTU), Eviderikehorovei 200, 4000 Packilde, D.

 $500 - 2100 \text{ cm}^{-1} 500^{\circ}\text{C NH}_{3} = 1\%$

 $2100 - 5500 \text{ cm}^{-1} 1027^{\circ}\text{C NH}_{3} = 10\%$



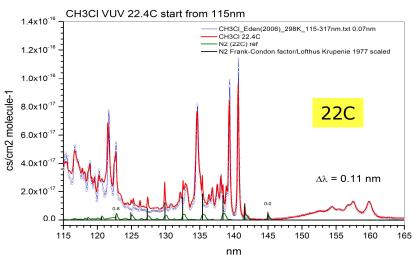


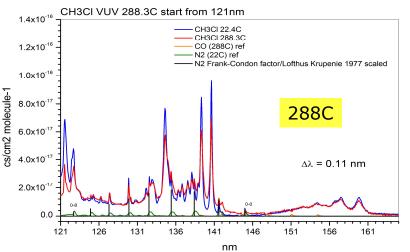

- ☐ Updated NH3 line-list database available at ExoMol web site
- ☐ Can be used for NH3 spectra modeling up to 1500C

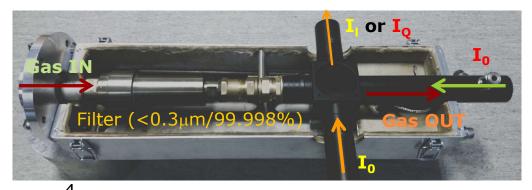
Far-UV spectroscopy of NH3

- Difficult molecule to deal with
- Most reliable data: 180 < λ
 </p>

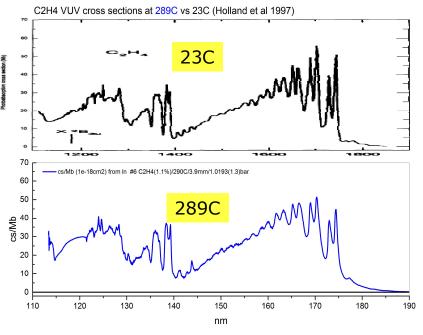
NH3 spectra analysis:


IMPRESS 2: **Metrology for Air Pollutant Emissions**


Wo et al (2007): 110-144 m: (synchrotron)


Cheng et al (2006): 140-220 nm (synchrotron)

Far-UV spectroscopy of CH3Cl and C2H4

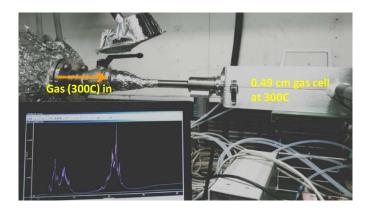

Measurements on 0.39 cm gas cell (up to 300C)

(λ -calibration with NH3 spectrum)

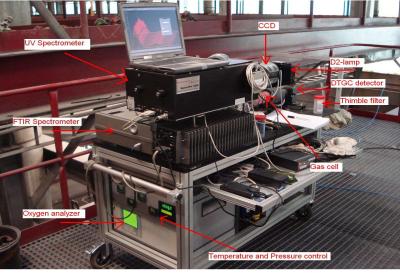
Lower end limited by MgF2 cut off (temperature depended)

Detailed CH3Cl spectra analysis (320-115 nm): Eden et al (2007) (synchrotron)

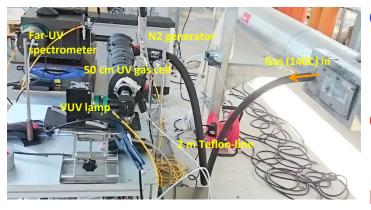
Ethylene spectra analysis: Holland et al (1997) (synchrotron)



Field measurements: on-line vs in situ



- □ UV/IR Light through
- ☐ Ti-probe at 300C, gas cell at 300C (far-UV)
- No tar condensation issues



- □ Removing heavy tar with tar trapper
- UV/IR dedicated measurements at 150C: only limited by optics (windows)

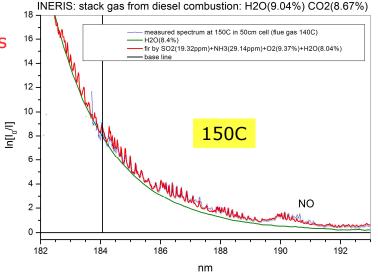
Field measurements: NH3 in stack gas

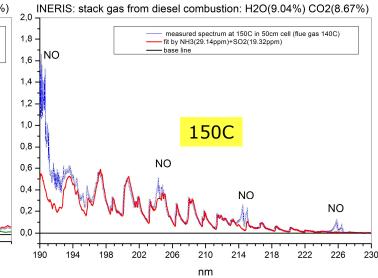
Combustion cases:

- natural gas (EL, power)
- biomass (wood pellets, heating)
- diesel (cars)

On-line measurements at 150C

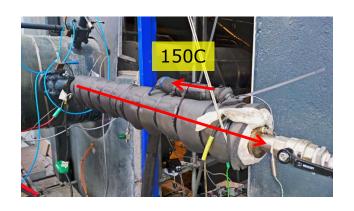
above stack gas temperature 130-140C

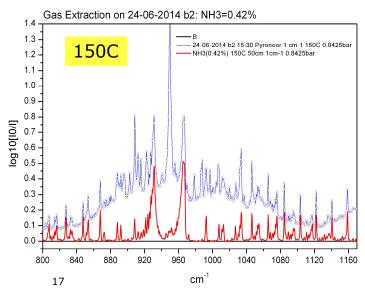

Relevant for gas cleaning process

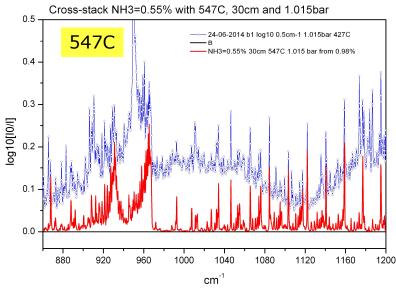


- ✓ In situ/on line measurements
- ✓ Limited by H2O (50cm)
- ✓ Excellent sensitivity to

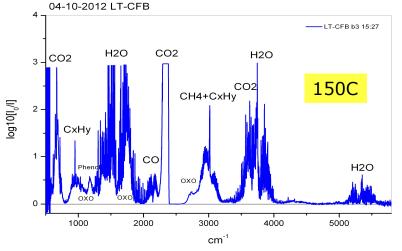
NH3, SO2, O2, H2O, NO



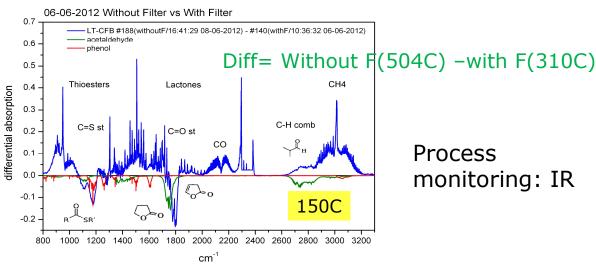

Field measurements: 6MW demonstration plant

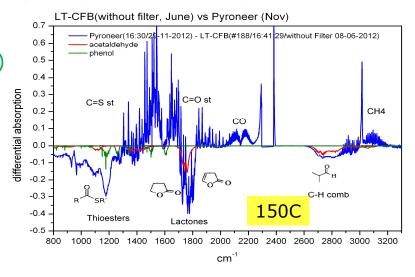


- Straw gasification
- ☐ Gas feed into burner
- ☐ Target: NH3, HCN, NO and H2O
- ☐ In situ (cross-stack) and gas extraction: same H2O

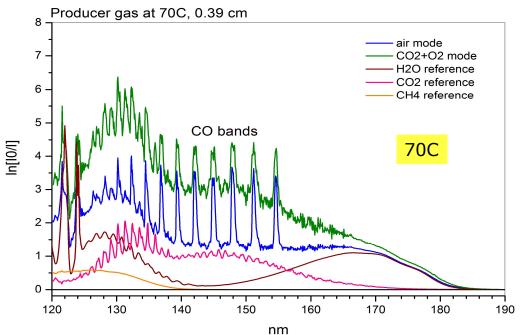


- NH3 extraction: ca. 24% less than in situ
- NH3 trapping by condensing acids/tars


Field measurements: LT-CFB (LT-gasification, 100kW)

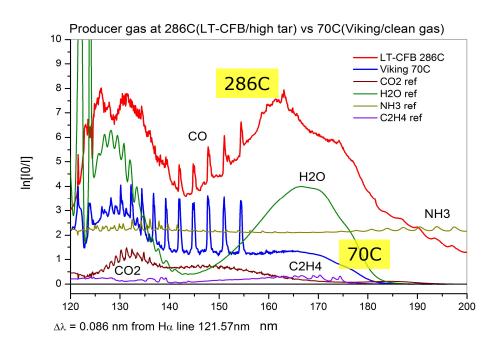


- Straw gasification
- ☐ Gasifier with (330C) and without (504C) particle filter: "base line" check (=process monitoring)
- ☐ thioesters and lactones: precursors of more simple HC
- \square Higher T \rightarrow cleaner gas


Diff= 6MW(547C) -100kW(504C)

Process monitoring: IR

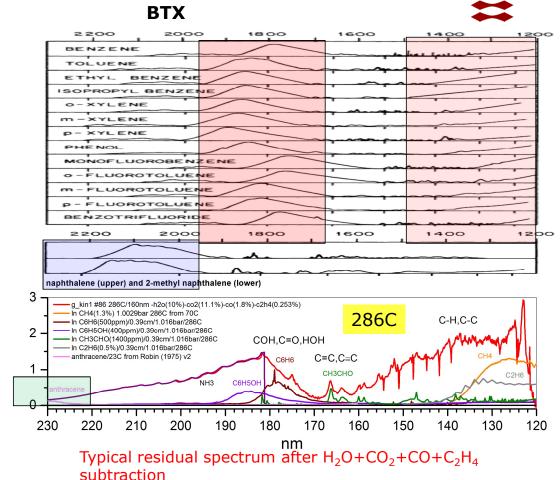
Field measurements: Viking (HT-gasification)


☐ Traces of NH3 and other organics

- *) Aldehydes in CH₃CHO equivalent
- **) below detection limit
- ***) concentrations calculated from spectra measured over 10 min measurement time

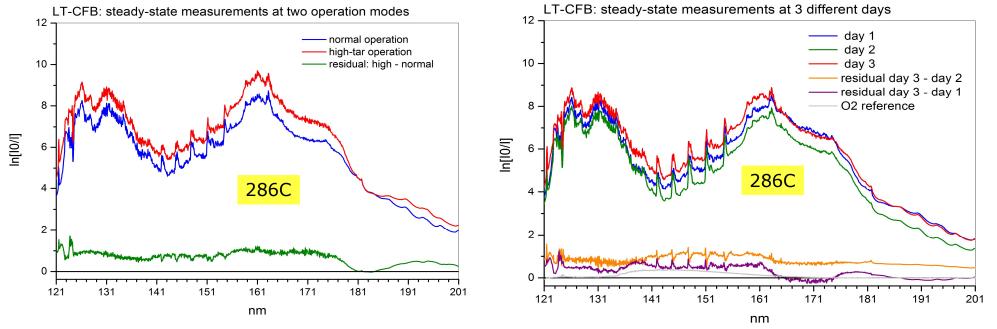
Viking	Air ***	O ₂ -CO ₂ 1st run ***	O ₂ -CO ₂ 2nd run***
CH ₄	0.433%	0.866%	1.028%
CO ₂	12.2%	31.08%	24.42%
H ₂ O	2.74%	2.82%	2.8%
02	0.354%	0.885%	0.955%
CO	8%	14%	14%
N ₂	77%	0%**	0%**
NH ₃	33ppm	0ppm**	0ppm**
C ₆ H ₆	0ppm**	22ppm	22ppm
CH ₃ CHO*	0pmm**	100ppm	100ppm
OCS, CH₃CI, HCI	0ppm**	0ppm**	0ppm**

Field measurements: LT-CFB (LT-gasification, 100kW)



Tar (PAH) contribution to the total absorption:

☐ High: BTX (170-190nm)


20

- Medium: "light tar" (naphthalene+) (190-220nm)
- □ Low: "heavy tar" (anthracene+) (λ >220nm)

Field measurements: LT-CFB (LT-gasification, 100kW)

Process monitoring: far UV

- □ "high-tar" operation mode: less BTX(181 nm), more tar (<170nm) and less NH3(185-200nm)
- □ "normal" operation mode: no change in BTX and minor O₂ changes in the gas over few days

Conclusions

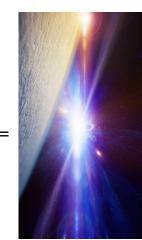
- Broad-band absorption spectroscopy is a <u>powerful and robust tool</u> for <u>tar</u> and <u>major/minor gas components</u> in situ and on line measurements <u>and</u> process monitoring: <u>buy all for 1 price concept</u>
- T-dependent cross section databases can be generated on request (support instrument/sensor development
- Successful demonstration of in situ/on line approaches in measurements in various environments (low/high temperature gasification and combustion)
- Far-UV (160nm<) can be used for tar/BTX in situ measurements (absolute or relative) by simple weighting of the 195-230 nm and 170-200 nm areas under an absorption spectrum
- Ability unexpansive far UV small spectrometers opens possibility for a new in situ tar/BTX sensor development when a complex tar/BTX sampling can be avoided.

Acknowledgments

- Energinet.dk: projects No. 2013-12027 and 2011-1-10622
- The work partly has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme

IMPRESS 2: **Metrology for Air Pollutant Emissions**

Thank You


Questions? Comments?

alfa@kt.dtu.dk

+45 23 65 2906

