Trondheim, May the 25th 2016

Presentation of GAFT for Aviation Biofuels through Biomass Gasification GAFT/IEA workshop

Roger A. Khalil

Brief overview of the project

- GAFT is a competence building project (KPN)
- Financed by:
 - The Research council of Norway (80 %)
 - Industry partners (20 %)
- Project duration: 4 years (2015 2018)
- Total Budget: 20 MNOK

GAFT industry and R&D partners

Partners:

SINTEF Energi AS Project leader NTNU R&D partner Stiftelsen SINTEF R&D partner SP Energy Technology Center AB R&D partner R&D partner Industry partner

Johnson Matthey **Avinor** Silva Green Fuel AS Industry partner Viken Skog Industry partner **CAMBIASA** Industry partner **ECOPRO AS** Industry partner The Research Council of Norway Financing organ

Brief overview of the project

Objectives

To contribute to accelerated implementation of liquid biofuels production in Norway

Sub-objectives:

- Support implementation of pre-treatment methods, with particular attention to feedstock mixing and torrefaction that allow the use of challenging biomass in entrained flow (EF) gasification
- EF gasification technology improvement through lab experiments and modelling
- Fischer-Tropsch synthesis development for medium scale (150 500 MW thermal input)
- Techno-economic assessment of the overall biofuels production process with integration of heat recovery for relevant Norwegian business cases (Follum and Tofte sites)
- Education of highly skilled candidates within this area and training of industry partners

Board & project management

Gantt diagram for GAFT	Executive	Yea	r													Bud
SPs and tasks	partner	2015	Q2	Q3	Q4 2	016 Q2	Q3	Q4	2017	Q2	Q3	Q4	2018 (Q2 Q:	3 Q4	
SP0 – Project management	SINTEF ER															220
SP1 – Feedstock knowledge & pre-treatment	SINTEF ER															177
Task 1.1.1 Pre-treatmen via torrefaction for	SINTEF ER							4	A				_			467
Task 1.2.1 Production of feedstock mixtures	SINTEF ER							4	4			4	•			600
Task 1.3.1 Optimal particle size distribution for	SINTEF ER							4	•							255
Task 1.3.2 Optimal ash composition through	SINTEF ER				A											450
SP2 – EF-Gasification	SINTEF ER															355
Task 2.1.1 EF gasification study for syngas	SINTEF ER						4	^ '	*				_			900
Task 2.1.2 Influence of gasification condition	SINTEF ER										4	<u>۰</u>	•			900
Task 2.1.3 Reactivity of products of incomplete	SINTEF ER															→ 700
Task 2.1.4 Scalability experiments, tests	ETC															→ 750
Task 2.2.1 Simulation (PhD Work)	NTNU						4	<u> </u>	♦		4	<u></u> •	•			0
Task 2.2.2 Comparative study (PhD Work)	NTNU											ļ ·	•			• 0
Task 2.2.3 PhD student follow-up and guidance	SINTEF ER															300
SP3 – Fischer-Tropsch Synthesis	SINTEF MC															350
Task 3.1.1 Catalyst screening	SINTEF MC			4	\		4	_								100
Task 3.1.2 Effect of process conditions	SINTEF MC										4	^				120
Task 3.2.1 Reactor and process optimization for	SINTEF MC										(_			A	130
SP4 – Value-chain analysis	SINTEF ER															295
Task 4.1.1 Scale-up analysis of FT biocrude	SINTEF ER						4	4							A	900
Task 4.1.2 FT biocrude upgrading at refinery:	SINTEF ER											4	•			500
Task 4.2.1 Regulatory framework and incentives strategy	SINTEF ER						4	_								♦ 500
Task 4.2.2 Risks and mitigation analysis	SINTEF ER												•			450
Task 4.2.3 Economic viability assessment	SINTEF TS						4	A			(_				600
SP5 – Education	NTNU															419
Task 5.1.1 Education of PhD candidate	NTNU															♦ 307:
Task 5.1.2 Education of Master candidates	SINTEF ER															200
Task 5.1.3 Summer student programme	SINTEF ER									4	A			A		200
Task 5.2.1 Training of the industry	SINTEF ER				*				*				*			★ 725
SP6 – Technology monitoring and dissemination	SINTEF ER															183
Task 6.1.1 Technology monitoring	SINTEF ER															400
Task 6.1.2 IEA Task participation	SINTEF ER		4		A		A	-	A	4	A		A	A		4 920
Task 6.2.1 Website	SINTEF ER		7	t												190
Task 6.2.2 Newsletters	SINTEF ER				r	*	7	*	,	*	,	*	*		*	200
Task 6.2.3 Publishing	SINTEF ER				`										1	0
Task 6.2.4 eRoom	SINTEF ER		4	r		*			,	*			*			120
◆ = JP, ▲ = Presentation, ◆ = PhD thesis, ▲ = Presen	tation for IEA	Γask ι	mem	bers,	* =	Milest	one									

Torrefaction

Feedstocks:

- Stem wood (debarked): 1 x 1 cm cubes
- Bark: chipped into pieces (~5-7 cm)
- Stump: shredded into pieces (~3-5 cm)

Torrefaction conditions:

- Temperature: 225 °C, 275 °C and 300 °C
- Residence time: 30 min and 60 min

The raw and torrefied samples were ground by a cutting mill to <1 mm particle size.

Stem wood
Stump
Bark

Raw
225°C 275°C 300°C

275°C 300°C

Tube reactor

Furnace

Sample amount: ~ 80 g

Heating rate: 10 °C/min

Atmosphere: Nitrogen

Specification and purpose

• Fuel flow rate: 2 kg/h ~10-15 kW

Number of operators : 2

Pressure: 10 bar(g)

Wall heater temperature: 1500 °C

Fuel particle size distribution: 50 μm-

Continues operating time: 6 h

The reactor will primarily be use to;

Study if a fuel is suitable for gasification

Study soot and tar formation from gasified biomass

5800

4000

Provide validation data to numerical models

Advanced testing facilities: From micro-scale to industrial pilot

GAFT: Value chain model for production of liquid biofuels from co-processing low grade woody biomass and organic waste

Thank you for your time

