

Hot Gas Clean-Up with Dolomite

Şiringül AY, Alper Sarioğlan, Hüsnü Atakül*

TUBITAK Marmara Research Center, Energy Institute, Turkey *Istanbul Technical University, Chemical Engineering Department, Turkey

> EERA bed materials workshop Istanbul, 18 April 2012

Introduction **Motivation Objectives Experimental Results and Discussions Conclusions**

Energy

- > any source of usable power
- > one of important needs of human beings
- Energy usage today
 - > global problem with catastrophic consequences
- Coal & Oil
 - Two biggest energy sources of world today
 - > causes serious environmental problems

For Turkey

- Sustainability and security of the energy supplying is a common problem for many countries including Turkey (Indeed for all countries).
- Coal and biomass are the most widespread indigenous energy sources of Turkey.
- Therefore, developing know-how on the clean utilization of coal and biomass is of great importance.

Average characteristics of Turkish lignites

high moisture high ash high sulfur content low calorific values

2001-300 kcal/kg	0 >4 3001-4000 kcal/kg	1000 kcal/kg	al/kg
			1000-2000 kcal/kg

Reserve	12.1 billion tons
Average moisture content	42 %
Average ash content	21.5 %
Average sulfur content	1.85 %
Average calorific value	1807 kcal/kg (7553 kJ/kg)

	CV (kcal/kg)	%	Σ (%)
	<1000	3.2	3.2
	1001-2000	66.3	69.5
	2001-3000	24.5	94.0
)	3001-4000	5.2	99.2
	>4000	0.8	100

Alternative Solutions for more efficient & cleaner utilization of coal

Gasification?

- Gas fuels
- Liquid fuels

Typical gas composition from gasification processes (T=550-2000°C, P 1-35 bar)

Gas	Composition(%)
СО	30 – 45
CO ₂	5 – 25
H ₂ O	0 -12
H ₂	20 – 35
H ₂ S	Up to 2

Sayed, et al., 2006.

Other impurities
◆ Particulates
◆ H₂S
◆ Tar
◆ NH₃
◆ HCl
◆ Alkaline vapors

		Contaminant	t
	Tars	H ₂ S	NH ₃
Concentration range	1-150 mg/Nm ³	20-20.000	1.000- 14.000

Torres et al., 2007.

- Turkish lignites contains significant amount of sulfur.
- Based on location, the amount of sulfur in Turkish lignites ranges from 0.5% wt to 7.0% wt.
- Nearly 50% of sulfur presented in the coal leaves the gasification system in the gas phase.
- Sulfur levels as high as 5000 10000 ppmv could be expected in the outlet stream of the gasifier.

Why sulfur removal ?

- Odor nuisance (an odor threshold of 0.5 ppb-2 ppb by volume),
- Inhalation of a single breath at a concentration of 1000 ppm (0.1%) may cause coma,
- Acceptable limits: 10 ppm (50 ppm for a duration of 10 minutes),
- Cause pipeline corrosion and limit plant lifetime,
- The sulfur limit (H_2S, COS, CS_2) for catalytic systems such as Fischer-Tropsch, methanol production or fuel cells: ≤ 1 ppmv
- For microturbines and gas engines, the limits for sulfur containing compounds are < 20 ppm, preferably <10 ppm</p>

Conventiaonal Sulfur Removal

- In conventional treatment, H2S or other sulfur compounds are removed via low temperature amine scrubbers.
- Wastewater containing chemicals from the scrubbing process must be treated accordingly to prevent the contamination of drinking water.
- Removing H2S using scrubbers requires lowering the temperature of the syngas from 850°C (temperature of gasification) to 40-50°C with concurrent tar condensation.
- Tar condensation can cause plugging and fouling of the condenser and process piping. Tar build up on reactor walls makes the heat recovery inefficient.
- Tar is also a loss of hydrocarbon and leads to decrease in carbon utilization ratio.

<u>©T. McCracken mchumor.com</u>

High Temperature Sulfur Removal

- RTI International estimated that desulfurization at 370-480°C in a 600 MW integrated gasification combined cycle (IGCC) plant could increase the overall process thermal efficiency by 3.6 efficiency points over conventional Selexol sulfur removal technology.
- ♦ This gain would reduce the plant cost by 269 USD per kW resulting in a associated 9.6% reduction of electricity cost.
- ♦ Considering that IGCC has a thermal efficiency of 40-50%, an increase of 3.6 thermal efficiency make sense

Dolomit

Why Tar Removal?

Among the byproducts of gasification, "tars" pose the greatest problem to end users. Upon condensation tars,

block downstream pipelines foul engines and turbines. Hinder heat transfer Poison catalysts.

Phyisical Strategies (scrubber + filter)

- Not attractive because of their costs
- Maybe effective but liquid scrubbing produces large amounts of liquid waste / waste water requiring downstream treatment
- Reduced carbon efficiency
- Upon condensation, blocking of downstream pipelines and heat exchangers
- Environmental concerns for regulated emission products such as NOx and SO2

Catalytic Strategies

- more efficient
- improves the carbon efficiency
- Easy deactivation of the catalyst with the fouling, NH3 or H2S

In this study Preliminary results obtained from the hot gas cleanup research of an ongoing project "TRIJEN Liquid Fuel Production from Biomass and Coal Blends" on liquid fuels production from coal-biomass blends

Experimental-Sorbent

Sorbent:

Origin: Eskisehir regionParticle size: 2-3 mmAmount: 180 g

Chemical analysis of the dolomite used (wt %)

Moisture	Ignition loss	CaO	MgO	SiO ₂	Fe ₂ O ₃	Al ₂ O ₃	MnO ₄	Na ₂ O
0.010	45.980	36.930	16.880	0.081	0.098	0.125	0.003	0.050

Physical properties of the uncalcined and calcined dolomite

	BET (m²/g)	Total Pore Volume (cc/g)	Average Pore Diameter (Å)		
Uncalcined dolomite	0.069	0.00149	860.5		
Calcined dolomite	11.3	0.2513	889.5		

F: Furnace, **DB:** Dolomite fixed bed, **GC:** Gas Chromatography instruments for permanent gas and sulfur compound analysis, **MFC:** Mass flow control valves, **CEM:** Controlled evaporator and mixer, **M:** Mixing manifold, **NV:** Needle valve, **SM:** Static mixer, **PG:** Pressure gauge, **TC:** Thermocouple, C: Condenser

Experimental-Set Up

Removal of H₂S from binary, tertiary and simulated gasification outlet gas mixtures by dolomite.

Cases		F	eed gas co Ba	ompositi asis (v%	on on w)	et		Inlet H ₂ S concentration (ppmv, db*)	Outlet concentration of sulfur compounds (ppmv, db)		
	N ₂	H ₂	CO ₂	CO	H ₂ O	CH ₄	NG**	H_2S	H ₂ S	COS	CH ₃ SH
1	73	27	-	-	-	-	-	1460	~0	-	-
2	90	-	10	-		-	-	1800	2-3	-	-
3	90	-	-	10	-	-	-	1800	~0	1	-
4	64	26	10	-	-	-	-	1280	128	11	-
5	78.2	-	-	10.2	11.7	-	-	1564	157	9	-
6	85	-	10	-	-	-	5	1700	70	7	0.05
7	71.2	-	-	-	20.9	-	7.9	1424	190	-	0.01
8	8.5	54.6	3.0	13.7	15.1	5.1		200	140	11	-
9	63	27	7	-	-	-	3	1260	189	11	-

db: Dry basis, ** Natural gas is composed of 90% CH_4 + C2s-C5s, CO_2 , N_2

• Cases 1-3

: Binary gas mixtures

• Cases 4-7

- Case 8
- Case 9

- : Tertiary gas mixtures.
- : Simulated mixture representing synthesis gases from a gasifier
- : Gas mixtures contained NG.

H₂S Removal from Binary Gas Mixtures Using Dolomite

H₂S Removal from Binary Gas Mixtures Using Dolomite

Case 1:

Cases		F	eed gas co Ba	ompositi asis (v%	on on w)	et		Inlet H ₂ S concentration (ppmv, db*)	Outlet concentra sulfur comport (ppmv, dbH2SCOS~0-	ation of unds))	
	N_2	H_2	CO ₂	СО	H ₂ O	CH ₄	NG**	H_2S	H ₂ S	COS	CH ₃ SH
1	73	27	-	-	-	-	-	1460	~0	-	-

- All H₂S was captured by dolomite
- The composition of the reactor effluent gas did not change indicating that no other reaction took place in addition to the chemisorption of the H₂S.
- H₂ behaved like an inert gas and, consequently the results obtained from H₂S removal process with H₂-N₂ mixture have been similar to that obtained with H₂S in the pure nitrogen.

Case 2:

Cases		F	eed gas co Ba	ompositi asis (v%	on on w)	et		Inlet H ₂ S concentration (ppmv, db*)	Outlet sulf	concentr ur compo (ppmv, dt	ation of unds)
	N ₂	H ₂	CO ₂	СО	H ₂ O	CH ₄	NG**	H_2S	H ₂ S	COS	CH ₃ SH
1	73	27	-	-	-	-	-	1460	~0	-	-
2	90	-	10	-		-	-	1800	2-3	-	-

- Dolomite was still very effective: reducing the H₂S level from 1800 ppmv to around 3 ppmv.
- The equilibrium H_2S concentration under these conditions was calculated to be ~1.3 ppmv.
- No change was observed in the composition of inlet gas indicating that there was no other reactions occurred.

Case 3:

Cases		F	eed gas co Ba	mpositi Isis (v%	on on w)	Inlet H ₂ S concentration (ppmv, db*)	Outlet sulfi	Outlet concentration sulfur compounds (ppmv, db)			
	N ₂	H ₂	CO ₂	CO	H ₂ O	CH ₄	NG**	H_2S	H ₂ S	COS	CH ₃ SH
3	90	-	-	10	-	-	-	1800	~0	1	-

- The inlet gas composition changed during the experiment.
- The CO concentration decreased from 10 v% to 7.7 v% while 1.6 v % CO₂ was measured in the reactor effluent gas stream.
- CO₂ existence in effluent gas indicated that the Boudouard reaction, which is taking place according the following reaction, can be likely responsible for CO₂ formation.
- A trace amount of COS formed while no H₂S was detected in the reactor effluent gas. COS was reported to form in the existence of CO and or CO₂ due to the reactions between these components and H₂S through the following reactions

Boudouard: 2CO \leftrightarrow CO₂ + C

COS formation:

 $CO_2 + H_2S \leftrightarrow COS + H_2O$

 $CO + H_2S \leftrightarrow COS + H_2$

The formation of COS is severely temperature limited and inhibited by hydrogen.

Under the experimented conditions of this study, it was more probable that COS was formed due the presence of CO as no COS was detected during the experiment done with 10 vol % CO_2 in N_2 .

H₂S Removal from Tertiary Gas Mixtures Using Dolomite

Case	4:										
Cases		F	eed gas co Ba	ompositi asis (v%	on on w)	Inlet H ₂ S concentration (ppmv, db*)	Inlet H2S concentration (ppmv, db*)Outlet concentration sulfur compounds (ppmv, db)				
	N ₂	H_2	CO ₂	СО	H ₂ O	CH ₄	NG**	H_2S	H ₂ S	COS	CH ₃ SH
4	64	26	10	-	-	-	-	1280	128	11	-
$\begin{array}{c} 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	⁰ co ges in th cined d bar, GH	6 ne gas c olomite ISV = 5	26 15 H2 Gas co Inlet gas composition in Case 4 5600 h ⁻¹ (a	10 Component Product On durin I. Dry ba at STP),	7 D2 g the H asis, T = , C _{H2S, inl}	 About 90 % However, H₂ stream mease than the equ of 50 ppm p H₂S removal that obtaine mixtures This might be existence of the water van WGS reaction the activity of This tertiary formation of comparison similar CO 	of H_2S S in the sured as uilibrium redicted l efficient d with the pe attribut CO ₂ in the por process of dolom gas see COS to to the bi	removed reactor e ~128 pp H ₂ S cond by TD ca by TD ca cy was lo ne binary uted to th he reacta duced as vater vap ite towar med to p a larger e nary mix	d effluent gas m higher centration alculation. wer than gas ne ants and result of or reduces d H_2S . romote the extend in ture with		

Case	: 5:										
Cases		F	`eed gas co Ba	ompositi asis (v%	on on w)	Inlet H ₂ S concentration (ppmv, db*)	Outlet concentration of sulfur compounds (ppmv, db)				
	N ₂	H ₂	CO ₂	CO	H ₂ O	CH ₄ NG**		H ₂ S	H ₂ S	COS	CH ₃ SH
5	78.2	-	-	10.2	11.7	-	-	1564	157	9	-
100 - 90 90 - 0 90 - 00	11,5 3 CO	÷,5	8,4 0 H2 Gas co	0 CC omponent Product	5,7 D2 gas	88,5 82 82 82 82 82 82 82	2,4	 The possibility of investigated. H₂S removal eff 9 ppm COS was Gas composition resulting in 5.7 H₂ in the produte This was indicated atmosphere with the WGS reaction Consequently, a carbon monoxide from 11.5 vol % basis. 	of WGS i feciency s observe n change vol % C ct gas, ted that ch water on on the as it migl de conce % to 3.5	reaction with the gas vapor on the exponent of the exponent o	was lerably .4 vol % hanced ce surface. bected, the decreased a dry

Changes in the gas composition during the H_2S removal by calcined dolomite in Case 5. Dry basis, T = 1023 K, P = 3 bar, GHSV = 5600 h⁻¹ (at STP), $C_{H2S, inlet}$ = 1564 ppmv.

These two cases (case 4 and 5) showed that :

The water gas shift (WGS) and the reverse water gas shift (RWGS) reactions could occurred during the hot gas desulfurization by dolomite.

Direction of the reactions, however, was dictated by the gas composition where the thermodynamic equilibrium was attained.

The thermodynamic equilibrium conversion of CO to CO_2 via the water gas shift reaction at 1023 K was calculated as ~% 53 according to the thermodynamic equilibrium correlation given below [16]:

 $Log(K) = -2.4198 + 0.000385T + \frac{2180.6}{T}$

Case 6: Simulating dry reforming

Cases	Feed gas composition on wet Basis (v%)						Inlet H2S concentration (ppmv, db*)Outlet concentration sulfur compound 			ation of unds))	
	N_2	H_2	CO ₂	СО	H ₂ O	CH ₄	NG**	H_2S	H ₂ S	COS	CH ₃ SH
6	85	-	10	-	-	-	5	1700	70	7	0.05

Changes in the gas composition during the H_2S removal by calcined dolomite in Case 6. Dry basis, T = 1023 K, P = 3 bar, GHSV = 5600 h⁻¹ (at STP), C_{H2S, inlet} = 1700 ppmvv.

- Aim: To investigate the possibility of the occurrence of this reaction
- About 95 % of H₂S removed
- 1.2 vol % CO was detected in the product gas while the amount of methane slightly increased from 4.5v% to 5.4v%.
- No H2 was observed in the outlet stream, suggesting that either the dry reforming reaction (reaction 10) did not occur at all or H2 was consumed immediately after its formation as an intermediate product by any possible reaction such as hydrogenation of carbon deposited on the dolomite surface (reaction 11).

 $CH_4 + CO_2 \leftrightarrow 2H_2 + 2CO$ $C + 2H_2 \leftrightarrow CH_4$

Case 7: Simulating steam reforming

Cases		F	eed gas co Ba	ompositi asis (v%	on on w)	Inlet H2S concentration (ppmv, db*)Outlet concentration of sulfur compounds (ppmv, db)							
	N ₂	H ₂	CO ₂	CO	H ₂ O	CH ₄	NG**	H_2S	H ₂ S	COS	CH ₃ SH		
7	71.2	-	-	-	20.9	-	7.9	1424	190	-	0.01		
- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00	0	90 84,2 9 0 2,8 0 2,35						 About 86% No COS and product gas. the findings to favors COS for Although in a methane reformed. H₂ were expension these expensions observed. Insuration with H₂ This 	 About 86% of H₂S removed No COS and CO was detected in the product gas. These results supported the findings that the existence of CO favors COS formation. Although in a conventional steam methane reforming reaction, CO and H₂ were expected to form as products, in these experiments no CO was observed. Instead, CO, formed along 				
H2 CH4 CO2 N2 Gas component Inlet gas Product gas								the excess of steam. Surplus steam might be the reason of CO ₂ formation instead of CO according to the following reactions: $CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2$ $C_2H_6 + 4H_2O \leftrightarrow 2CO_2 + 7H_2$					
Changes in the gas composition during the H ₂ S removal by calcined dolomite in Case 7. Dry basis, T = 1023 K, P = 3 bar, GHSV = 5600 h ⁻¹ (at STP), C _{H2S, inlet} = 1424 ppmv													

H₂S Removal from Simulated Gasifier Outlet Gas Mixtures: The effect of H₂S load

Case 8: Simulatig gasifier outlet

Cases	Feed gas composition on wet Basis (v%)						Inlet H2S concentration (ppmv, db*)Outlet concentration sulfur compounds 			ation of unds)	
	N_2	H ₂	CO ₂	СО	H ₂ O	CH ₄	NG**	H_2S	H ₂ S	COS	CH ₃ SH
8	8.5	54.6	3.0	13.7	15.1	5.1		200	140	11	-

Changes in the gas composition during the H_2S removal by calcined dolomite in Case 8. Dry basis, T = 1023 K, P = 3 bar, GHSV = 5600 h⁻¹ (at STP), C_{H2S, inlet} = 200 ppmv.

- H₂S removal is obviously low.
 Efficiency: 30 %
- Thermodynamic calculations with this inlet gas composition dictated a maximum achievable equilibrium H₂S of ~120 ppm. Hence a 140 ppmv in the reactor off gas seems to be reasonable.
- The changes in the outlet gas stream with increased H₂ and decreased CO, indicated that the WGS reaction also took place to some extent.
- The carbonyl sulfur formed likely due to the reaction between H₂S and CO/CO₂.

Case 9:

Cases		F	eed gas co Ba	ompositi asis (v%)	on on w)	Inlet H ₂ S concentration (ppmy_db*)	Outlet concentration of sulfur compounds				
	N ₂	H ₂	CO ₂	СО	H ₂ O	CH ₄	NG**	H ₂ S	H ₂ S	COS	CH ₃ SH
9	63	27	7	-	-	-	3	1260	189	11	-

• H₂S Removal efficiency: ~ of 85 %,

 Apparently the reverse water gas shift reaction (CO₂ + H₂ ↔ CO + H₂O) occurred in the reactor resulting in a decrease in H₂ and CO₂ percentages and producing CO and water vapor which was not existed in the inlet gas stream.

Changes in the gas composition during the H_2S removal by calcined dolomite in Case 9. Dry basis, T = 1023 K, P = 3 bar, GHSV = 5600 h⁻¹ (at STP), C_{H2S, inlet}= 1260 ppmv.

The results of these studies showed that:

H₂S removal by dolomite is limited to around 150-200 ppmv.

- Due to thermodynamical constraints, the H₂S removal efficiencies with calcium containing materials are only on the order of 90 % under typical gasification conditions, resulting in residual H₂S levels of 100 ppmv or greater.
- This may suggest that dolomite could be used for strictly bulk H₂S removal requiring an additional bed to further polish the gas for the applications with more stringent sulfur cleanup.

Tar removal by dolomite (Preliminary results)

Experimental conditions	Feed gas composition, %V (db)	Outlet gas composition, %V(db)	Contaminants, inlet	Contaminant, outlet	 Dolomite showed a low degree of tar removal activity.
T _r =750°C	% 28.5 CO, % 25.0 CO ₂ ,	% 35 CO, % 22.0 CO ₂ ,	240 ppmv H ₂ S	216 ppmv H_2S with trace COS	 Xylene and toluene concentrations decreased whereas benzene concentration increased in the outlet stream.
Steam/C=0.21 Steam/tar=4.9	% 31.4 H ₂ , % 3.2 CH ₄ , % 11.9 N ₂	% 25 H ₂ , % 4.0 CH ₄ , % 14.0 N ₂	8.67 gC/Nm ³	7.28 gC/Nm ³	 At 750°C thermally/catalytically broken methyl groups in toluene producing benzene and methane.
			2.63 g C/Nm ³	4.62 g C/Nm ³	
			Benzene	Benzene	 With the same mechanism, wylene was deally lated into
			2.60 g C/Nm ³	2.28 g C/Nm ³	toluene and benzene,
			Toluene	Toluene	consecutively in the presence of
			3.44 g C/Nm ³	0.38 g C/Nm ³	exces hydrogen. The increase in methane percentage from 3 2%
			Xylene	Xylene	to 4.0% supported this suggestion.

Tar removal by comercial catalyst

(Catalyst: Precios metal based, monoliths with L = 25.4 mm and R = 20 mm)

The change of tar compound selectivity and formation of gasous products with reaction temperature on commercial precious metal based steam reforming catalyst under nitrogen atmosphere. 3.82 NI/min N₂, 15.45 g/h Xylene, 5.5 g/h H₂O and GHSV of ~22500 h⁻¹, Steam/C=0.26, Steam/Xylene=2.1

• Xylene was converted into
benzene and toluene.

- Gases such as CO, CO2, H₂, CH4 were detected at 563°C.
- This proces can be attributed to steam dealkylation reactions according to the reaction mechanisms.
- At 775°C: tar reduced from 61gC/Nm³ to 6.6 gC/Nm³

 $\mathrm{C_6H_5\text{-}CH_3}\ + \mathrm{H_2O} \rightarrow \mathrm{C_6H_6} + \mathrm{CO} + \mathrm{2H_2}$

 $C_6H_5\text{-}CH_3 + 2H_2O \rightarrow C_6H_6 + CO_2 + 3H_2$

Sarioglan(2012)

Tar removal by comercial catalyst

H2 and CO2 formation percentages and benzene, toluene and xylene selectivities in nitrogen stream at the outlet at two different reaction temperatures with similar inlet xylene loads of around 28 g C/Nm3 under nitrogen atmosphere with a GHSV of 22500 h-1

At high temperature (850oC):

- 97.3% of tar has been removed. In
- More xylene was left in remained outlet tar stream at 850°C, due to coking of aromatic compounds via polymerization or degradation might be the prevailing reaction instead of steam dealkylation with increasing the operation temperature.
- Presence of H2 and CO2 might be taken as a measure of slight increases in steam reforming activity of the catalyst

Tar removal by comercial catalyst

Carbon deposition on the (a) the fresh (right) and used (left) catalyst, (b) Fresh (left) and used (right) glass wool supporting catalyst bed

H2S removal performance of dolomite is strongli depens on operating temperature. Operating temperature need to be higher than 700K.

Removal degree of H_2S from hot gases by dolomite dictated by thermodynamic limitations

During H2S removal process, in addition to H_2S chemisorption, the WGS and RWGS reactions may occur depending on gas composition.

The Boudouard reaction was another concern to be taken into account.

Deactivation of CaO likely occurred at high CO_2 concentrations in the atmosphere, namely higher than 10 % by volume at ~ 1023 K.

COS formed during the H_2S removal by dolomite, possibly due to the presence of CO. Higher H_2S levels in the gas stream could likely improve the kinetics of reactions between CO/CO₂ and H_2S which produce COS.

Preliminary results showed that dolomite has some activity toward Tar (benzene, toluene and xylene as surrogated compounds).

The comercil precious metal based catalyst catalyst catalyzes dealkylation reaction tar components such as xylene

THANK YOU

THANK YOU VERY MUCH FOR YOUR KIND ATTENTION

Sarıoğlan, A., Tar Removal on Dolomite and Steam Reforming Catalyst: Benzene, Toluene and Xylene Reforming, International Journal of hydrogen energy (in press).