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Decarbonisation of transportation

» Possibly the most difficult aspect of climate change mitigation
» Severe lack of attention (electricity, electricity, electricity)

= Many confusing aspects/arguments around the problem.

* This presentation especially motivated by arguments like:

= "Electric vehicles will do the job”
= "Decarbonisation of fuel important, but only after electricity and heat”
= "Sustainable biomass is a scarce resource and therefore cannot do the job”
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Global transportation energy demand in 2050 1/Ly]r
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Global transportation energy demand in 2050 1/Ly]r
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Global transportation energy demand in 2050 1/'izyr
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Global transportation energy demand in 2050 1/'izyr

180 - Global transport emissions in 2010 were 8 GtCO,-eq/yr.
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Global transportation energy 1/LVIT
thought experiment*
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Global transportation energy 1/LVIT

thought experiment*

Lot Capping emissions at 3.2 GtCO,-eq/yr
160 - Max 38 EJ/yr Crude Oil Derived Products (CODPs) allowed
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Global transportation energy 1/LVIT

thought experiment*

180 7 Scenario”’|EA BEV” (BEV = Battery Electric Vehicle) is based on IEA
160 2050 estimate on transportation electricity demand: 2500 TWh/yr.
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Global transportation energy 1/LVIT
thought experiment*

180 7 Whatever the balance of 55 EJ/yr will be,
160 it needs to fulfill two requirements
1) Be afuel
2) Be carbon-neutral
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Global transportation energy 1/LVIT
thought experiment*

180 - Scenario "Max BEV” assumes complete
electrification of the light road sector: 7800 TWh/yr.
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Global transportation energy 1/LVIT
thought experiment*

0 The need for carbon-neutral
fuels in this scenario is 17 EJ/yr
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Global transportation energy 1/LVIT
thought experiment*
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What is the supply potential of sustainable ST
biomass?

= From ARS5 (IPCC, 2014):

“...This assessment agrees on a technical bioenergy potential of
around 100 EJ (medium evidence, high agreement), and possibly
300 EJ and higher (limited evidence, low agreement)...”

* From IEA (2011):

“...with a sound policy framework in place, it should be possible to

provide ... 145 EJ of total biomass for biofuels, heat and electricity

from residues and wastes, along with sustainably grown energy crops.”
= 80 EJ of biomass assumed for generating heat and power

= 65 EJ of biomass assumed available for biofuel feedstock
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What is the supply potential of sustainable

biomass?

M % /4

Assuming 80 EJ for heat and power and 50 % overall BTL efficiency
Supply potential estimate based on

= |PCC data=10EJ
= |EA data ~ 30 EJ

Demand of CNF
= Max Electric = 17 EJ/yr
= |EA Electric =55 EJ/yr
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What is the supply potential of sustainable 24 % 1 &
biomass?

Assuming 80 EJ for heat and power and 50 % overall BTL efficiency

Supply potential estimate based on
= |[PCC data =10 EJ

= |EA data ~ 30 EJ 60
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Biomass gasification for advanced biofuels
Long experience of medium-to-large scale thermochemical biorefineries

d PEAT AMMONIA

PLANT ' NSE BIOFUELS DEMO, VARKAUS, FINLAND,
OULU, FINLAND, 1991 I 2011 s
L" > [ Ii_'._,-- — '

- 3

1985 1995 2000 2005 2010 2015 2020 2025 2030

HYDROGEN FOR SYNGAS FOR FT-DIESEL NEW PROCESS FOR SMALLER SCALE
AMMONIA (140 MW) | o Large-scale O,-blown gasifier o Simpler process and lower capex
o Coal gasification o Innovative hot gas cleaning o0 Wide feedstock basis, target scale 30-150 MW
applied to peat o Technology from Finland o Biofuels, SNG, hydrogen, bio-chemicals
0 R&D support o R&D and IPR support from VTT o Process development at VTT in 2016-18
by VTT o Large-scale plants > 300 MW 0 Industrial demonstration in 2019-20
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VIr

Biomass can be converted to synfuels with an efficiency in the range of 50 — 60 %
(LHV), depending on the process configuration and end-product.

If by-product heat from the process is also utilised, additional 20 — 30 %-point
Improvement can be attained, leading to ~ 80 % overall efficiency

r ---------- ‘

I

N I 'WI 5
Blornass GASIFICATION GAS CLEAN-UP SYNTHESIS UPGRADING Synthetic
residuas fuel !

co,

Despite the high energy efficiency, more than half of feedstock carbon is rejected from
the process, as there is not enough hydrogen to convert it into fuels.

The traditional conversion route is therefore hydrogen constrained.
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Biomass
feedstock

Feed carbon

Feed hydrogen

Surplus carbon
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4 %/ &

By adding hydrogen from external source (enhancement),
the surplus carbon could be hydrogenated to fuel as well.

Feed carbon
Biomass

feedstock Feed hydrogen

Surplus carbon

External hydrogen
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Ysar

By adding hydrogen from external source (enhancement),
the surplus carbon could be hydrogenated to fuel as well.

Feed carbon
Biomass

feedstock

Feed hydrogen

Surplus carbon

External hydrogen
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Ysar

But the surplus carbon is in the form of CO, instead of CO!

Biomass
feedstock
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Ysar

Implications:

Only methane and methanol have reaction routes via CO,
More H, is required to produce one mole of fuel from CO, than from CO

CO, has higher activation energy than CO
Byproduct water from CO, hydrogenation inhibits methanol catalysts

Biomass
feedstock
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Ysar

Despite challenges related to CO, hydrogenation, the potential
Increase in fuel output is significant.

Biomass
feedstock
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Ysar

The process is not sensitive to the source of hydrogen, but
production from water via electrolysis using low-carbon
electricity is considered in this presentation

Biomass
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for gasoline or methane production over reference plant configurations, respectively. Such enhanced
process designs become economically attractive over non-enhanced designs when the average cost of
low-carbon hydrogen falls below 2.2—2.8 € kg, depending on the process configuration. If all sustainably
available wastes and residues in the European Union (197 Mt/a) were collected and converted only to
biofuels, using maximal hydrogen enhancement, the daily production would amount to 1.8—2.8 million

gg‘r;’:::sr:esidues oil equivalent barrels. This total supply of hydrogen enhanced biofuels could displace up to 41-63 per
Casification cent of the EU (European Union)'s road transport fuel demand in 2030, again depending on the choice of
Electrolysis process design.
Carbon dioxide © 2016 Elsevier Ltd. All rights reserved.
Synthetic fuels
[ Hannula / Energy 104 (2016) 199-212 20
Table 2
Summary of examined plant configurations.
Configurations Gasifier type Stoichiometry adjusted by COy remaoval Electralyser ASL® End product
oG Oz Sour shift Yes Yes Gasoline
0G+ Oz H; addition Yes Gasoline
oM Oz Sour shift Yes Yes Methane
OM+ (0 H. addition Yes Methane
5G Steam Gasifier Yes Yes Gasoline
5GH Steam H, addition Yes Gasoline
SM Steam Gasifier Yes Yes Methane
SM-+ Steam Hs addition Yes Methane

* ASU = cryogenic Air Separation Unit.




Gasifier Gasifier

Biomass Oxidiser
residue

chips

Biomass
residue
chips

Steam + Steam Air
Oxygen

Direct (with steam & Q) Indirect (with steam & air)
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Ysar
Gasoline via oxygen gasification (carbon flows)
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sar
Gasoline via steam gasification
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sar
Gasoline via enhanced steam gasification
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Ysar
Gasoline via enhanced oxygen gasification

Jolseb

Diluted carbon
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var
Gasoline via oxygen gasification (energy)

100 MW 112 MW 93 MW 79 MW

60 MW 52 MW
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H3IWHO43d
+H3171d
43 1H3IANOD
JONVHL3IN

OXIDISER
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M %/4
Gasoline via enhanced oxygen gasification (energy)

170 MW

d3SATOH103 13
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TONVHL13IW
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NIODAXO
H3WH0434
+4317114

OXIDISER
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SUMMARY VIr

When the maximally enhanced by an external H2 source, following
Increases in fuel output can be observed:

= 2.2-fold (methane) or 1.9-fold (gasoline) for steam gasification;
= 3.1-fold (methane) or 2.6-fold (gasoline) for oxygen gasification.

Overall carbon conversions for enhanced configurations:
* 67.0% (methane) and 58.4% (gasoline) for steam gasification;
» 98.0% (methane) and 79.4% (gasoline) for oxygen gasification.

Econ. feasible over base case when low-GHG H2 cost lower than
» 2.2 €£/kg (methane) and 2.7 €/kg (gasoline) for steam gasification;
= 2.4 €/kg (methane) and 2.8 €/kg (gasoline) for oxygen gasification.
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GHG emission balances for H2 enhanced

iy .
synthetic biofuels vir

® Electricity in hydrogen production

140
120 Electricity from grid in syngas
process
100 - m Refuelling station
£ 80 M Fuel delivery
=
@
o
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= W Forest residue transportation
40 - _— -
RED 60% limit W N20 from soil (direct and indirect
mechanisms)
20
N fertilisation required due to
harvesting
ﬂ | T I 1
Zero electricity Average Nordic Average Finnish  Average EU Fossil fuel M Diesel fuel consumption of
(10 gCO2/kWh) (100 gCO2/kWh) (172 gCO2/kWh) (441gCO2/kWh) comparator forwarder

Diesel fuel consumption in
harvesting and baling

Source: Koponen and Hannula (2016) ¥



GHG emission balances for H2 enhanced

synthetic biofuels
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Take-home messages 1/2

* Manufacture of synthetic biofuels makes for an efficient use of
biomass, provided that close attention is paid to heat integration
ISsues.

= Still, less than half of biomass carbon utilised in fuel production

* Renewable and sustainable carbon a scarce resource globally
—> Both the use of biomass (energy efficiency) and land (resource

efficiency) for bioenergy purposes should be as efficient as possible.

* This aspect not often discussed in relation to bioenergy.

02/11/2016
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Take-home messages 2/2

M % /4

= Significant increase in biofuel output could be attained via H2 enhancement

* However, to ensure deep emission savings, electricity needs to come from
a very low carbon source: Significant impact presumes that electric grids

are first largely

decarbonised /0

60

= Costs also a major issue. 50

— 40
» H2 enhanced biofuels “*E -0
still the least-cost
solution for large 20
scale decarbonisation 10
of the hydrocarbon .

supply system?
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