Carbo-V® Biomass Gasification Technology.
Status after Application of Sound Engineering Practices.

IAE Workshop
Holger Kittelmann
Karlsruhe, 4th November 2014
1. Project background Carbo-V®

2. Project status Carbo-V®
 a) Identified areas for improvements
 b) Consolidation project - conclusion
 c) Examples

3. Actual status of Carbo-V®

4. Typical plant set up for "First of its Kind"

5. The new robust Carbo-V® process
1. Project Background Carbo-V®
Initial Situation

- Carbo-V technology was operated for short term, could not be put into stable operation but the operation of ~ 1200-2000 hrs. has shown the process principle
- 100% of HTG capacity was reached incl. endothermic quench (90%)
- Mechanical design problems led to repeated shut downs

- Choren went into insolvency in July 2011 (Carbo-V® development since the early '90s)

- Linde (LEDD) bought Carbo-V® Technology in Q1 2012 because synergies and add on’s for other Linde technologies identified (ASU, Rectisol, CO2, H2, etc.) including all related know how, operation records, trade marks and patents

- Linde (LEDD) established a consolidation project (successfully completed)
 ➔ As final step, Linde to demonstrate stable operation of Carbo-V technology and its successful integration in biofuel / biochemical production
2. Project Status Carbo-V®
Identified Areas for Improvement

General findings:
- Complexity of the process concept is too high
- Non use of industrial proven concepts and equipment at the process
2. Project Status Carbo-V® – Results Consolidation Project – Conclusion

- Carbo-V® technology is a driver regarding cold gas efficiency, syngas quality and carbon conversion rate compared to other technologies available for woody biomass gasification.
- The consolidation confirmed that problems at the demo plant envisaged are not related to the technology and its principles.
- The consolidation confirmed that problems at the demo plant envisaged are rather shortcomings in the selection of the right equipment type and consequently engineering professionalism.
- Systematic investigations and tests at universities and with vendors provided appropriate explanations for the problems found and sound solutions for the future design.
- Kinetic and fluid dynamic modeling and simulations calibrated with operational results from the previous operating period provide a sound basis for the design modifications undertaken.

⇒ The Carbo-V® Technology is ready to be built and tested to mitigate the main uncertainty related to missing long term running experience despite challenging process implementation due to its "First of its Kind" character.
2. Project Status Carbo-V® – Results
LTG Design - Modified

Paddles optimized

Biomass

Gasification agent headers

Stirrer

Pyrolysis gas

Optimized design of transfer duct, new shape and heating to avoid condensation

Reliable sealing, driver power increased

A simplified solid handling system was established including concept check and the testing

Pyrolysis coke
2. Project Status Carbo-V® - Results

HTG Design - Modified

- Optimized design of endothermic part for max. coke conversion to push up cold gas efficiency to 73% by lab tests and CFD simulations
- Proper burner design developed with the help of Linde experts
- Combustion chamber with optimized cooling and refractory concept
- New slag discharge system
- Modified design of deflections chambers and transfer pipe
2. Project Status Carbo-V® - Results
Equipment Quantity and Layout

No. of equipment reduced by more than 40%

Previous Choren plant layout

New plant layout
→ reduction of plant height by 30m
Three-stage process

- 1st stage: Low temperature gasification (LTG)
- 2nd stage: High temperature gasification (HTG)
- 3rd stage: Endothermic Fluidized bed Gasification
3. Actual Status of Carbo-V® Technology Features - Highlights

- Cold gas efficiency more than 73%
- Tar-free and methane-lean raw syngas → unique feature of Carbo-V technology
- Highest possible carbon conversion rate (> 99.5 % by mass)
- No biomass pretreatment necessary (except drying and chipping)
- Plants with high installed capacity possible (scale up)

<table>
<thead>
<tr>
<th>Syngas</th>
<th>Vol. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>38…41</td>
</tr>
<tr>
<td>CO₂</td>
<td>24…27</td>
</tr>
<tr>
<td>H₂</td>
<td>31…33</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.1…0.2</td>
</tr>
<tr>
<td>N₂</td>
<td>1…2</td>
</tr>
<tr>
<td>H₂S/COS</td>
<td>0.01</td>
</tr>
</tbody>
</table>
4. Typical Plant set up for "First of its Kind" GtL/BtL Process SMR Boosted

- Steam methane reformer
- Optional: CO₂ purification & liquefaction
- Carbo -V®
- Shift* & CO₂ removal**
- Raw gas Compression
- Optional: ASU
- Linde Technologies
- CO₂
- CO / H₂
- FT –Synthesis; upgrading & finishing*** or any other synthesis
- Kerosene / Diesel**
- Chemicals
- Methanol
- Residual gas
- Natural gas or Biogas
- Biomass

* shift reaction only in case it is required to adjust the H₂/CO ratio
** CO₂ removal only in case CO₂ is not of use in downstream process
*** product split depends on FT technology, to be updated / confirmed by FT Licensor
5. Carbo-V® Improvement Summary

Technology improvement by Linde (compared to bought technology status)

— Simplification and optimization of process
— Reduction of number of equipment items by 1/3
— Less mechanical feeding devices
— New main burner
— Self-flowing slag additive and new slag discharge system
— Improved robustness and availability by
 — Usage of standard equipment as far as possible
 — Shifting of critical equipment from main process stream to side streams
 — Considerable reduction of mechanical feeding and sluicing devices
 — Reasonable buffer volumes
 — Reasonable redundancies / easy replacement concepts at critical parts
— Optimization of layout, reductions of plant heights by 30m
— Safety compliant instrumentation concept
Thank you for your attention.