

BtL – the bioliq[®] process

Thomas Kolb, Mark Eberhard

Engler-Bunte-Institut, Chemische Energieträger – Brennstofftechnologie, EBI ceb Institut für Technische Chemie, Vergasungstechnologie, ITC vgt DVGW Forschungsstelle am EBI, Gastechnologie, DVGW gt

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Engler-Bunte Institute, Fuel Technology Institute for Technical Chemistry, Gasification Technology DVGW Research Station, Gas Technology

Institute for Technical Chemistry, Gasification Technology DVGW Research Station, Gas Technology

5

Engler-Bunte Institute, Fuel Technology Institute for Technical Chemistry, Gasification Technology DVGW Research Station, Gas Technology

IEA Bioenergy – Joint workshop, Nov. 19 – 20, 2013, Gothenburg, Sweden | Thomas Kolb

7

Engler-Bunte Institute, Fuel Technology Institute for Technical Chemistry, Gasification Technology DVGW Research Station, Gas Technology

Slurry Specification

- 2 fractions organic & water
- solids up to 40 wt.%
- ash up to 10 wt. %
- organic acids (e.g. formic / acetic acid)
- alcohol (e.g. methanol)
- chloride up to 1 wt.%
- dynamic viscosity 50 mPas < η < 5000 mPas
- density
- Particle size
- pH

50 mPas < η < 5000 mPas 1000 kg/m³ < ρ < 1500 kg/m³ 90% < 100 μm 2 < pH < 7

Organic condensate 30% solids

Jahrestreffen der ProcessNet Fachgemeinschaft SuPER 5./6. November 2013, DECHEMA-Haus, Frankfurt a. M.

Engler-Bunte-Institut, EBI ceb Institut für Technische Chemie, ITC vgt

10

bioliq[®] Entrained Flow Gasifier

- Confirmation of Funding FNR / Sept. 2008
- Contract signed KIT-Lurgi / Dec. 2008
- Mechanical Completion / Oct. 2011
- Completion of Commissioning / July 2012
- First Flame / Aug. 2012
- Stable Operation with Liquid Fuel 80 bar / Dec. 2012
- Performance Test with Model Slurry / Jan 2013
- First Test Run July 2013

IEA Bioenergy – Joint workshop, Nov. 19 – 20, 2013, Gothenburg, Sweden | Thomas Kolb

Engler-Bunte Institute, Fuel Technology Institute for Technical Chemistry, Gasification Technology DVGW Research Station, Gas Technology

FACHAGENTUR

OHSTOFFE e.V.

Institute for Technical Chemistry, Gasification Technology DVGW Research Station, Gas Technology

bioliq[®] II Tankfarm & Slurry Pump

IEA Bioenergy – Joint workshop, Nov. 19 – 20, 2013, Gothenburg, Sweden | Thomas Kolb

Engler-Bunte Institute, Fuel Technology Institute for Technical Chemistry, Gasification Technology DVGW Research Station, Gas Technology

section

Engler-Bunte Institute, Fuel Technology Institute for Technical Chemistry, Gasification Technology DVGW Research Station, Gas Technology

IEA Bioenergy – Joint workshop, Nov. 19 – 20, 2013, Gothenburg, Sweden | Thomas Kolb

bioliq[®] ll

Quench & Slag Handling

15

Engler-Bunte Institute, Fuel Technology Institute for Technical Chemistry, Gasification Technology DVGW Research Station, Gas Technology

High Temperature - High Pressure (HTHP) Syngas Cleaning

- **Compact horizontal ceramic filter for** particle removal with CPP recleaning
- Dry sorption of sour gases (HCl, H₂S) and alkalines
- Catalytic conversion of organics and N-species (HCN, NH₃)
- CO₂ separation (optional)
- 700 m³/h STP synthesis gas (40 m³/h at 80 bar, 800 °C)
- \Rightarrow Energy Savings ca. 10% compared to state-of-the-art gas cleaning
- \Rightarrow **Process Integration**
- \Rightarrow Chemical Quench

Svngas from

Catalytic Ceramic Filter

bioliq[®] HTHP Syngas Cleaning

IEA Bioenergy – Joint workshop, Nov. 19 – 20, 2013, Gothenburg, Sweden | Thomas Kolb

DME and Fuel Synthesis

DME-synthesis

- One step DME synthesis
- Innovative isothermal reactor
- Temp. 250 °C, pressure 60 bar

DtG-synthesis

- Zeolithe catalyzed dehydratization, oligomerization and isomerization
- Temp. 350 450 °C, pressure 25 bar
- Recycling of unconverted gas
- Gasoline stabilization

IEA Bioenergy – Joint workshop, Nov. 19 – 20, 2013, Gothenburg, Sweden | Thomas Kolb

Engler-Bunte Institute, Fuel Technology Institute for Technical Chemistry, Gasification Technology DVGW Research Station, Gas Technology

Synthesis Pilot Plant

Engler-Bunte Institute, Fuel Technology Institute for Technical Chemistry, Gasification Technology DVGW Research Station, Gas Technology

Helmholtz Virtual Institute for Gasification Technology Towards Sustainable Energy Systems

Thomas Kolb, Manfred Aigner, Reinhold Kneer, Michael Müller, Roman Weber

23

24

IEA Task 33: Fall Meeting October 18-20, 2011, Pitea, Sweden