Biomass Utilization Status and Example in Fluidized Bed Boiler in Korea

2017.10.24

KEPCO Research Institute Kyoungil Park

I Renewable fuel in power plant

Direction of power generation technology

RPS (Renewable Portfolio Standard)

- Introduced in 2012 to promote the use and supply of renewable fuel and to activate renewable energy industry in Korea
- Selected suppliers must supply a certain percentage of total power generation capacity using renewable energy
 - ✓ 18 suppliers : KEPCO subsidiary 6, Private company 10, Public company 2
 - ✓ 2012 (2%)
 ✓ 2017(4%)
 ✓ 2018(5%)
 ✓ 2020(7%)
 ✓ 2023(10%)

REC weight factor for different renewable energy source

REC: Renewable Energy Certificate

REC factor	Target energy		
0.25	IGCC		
0.5	Waste, Landfill gas		
1.0	Bioenergy, RDF(100%), Hydropower, Onshore wind power, Tidal power		
1.5	Woody biomass(100%), Offshore wind power (<5km)		
2.0	Offshore wind power (>5km), Fuel cell		

Status of renewable fuel (Bio or Waste) application in domestic power plant

	Fuel		REC factor	Co-firing ratio (Period)	Power plant
	Wood Pellet		1	〈 4% ('13~present)	Standard PC boiler
Bio energy				~15% ('13~present)	Yeosu CFB boiler Samcheok CFB (ready)
	Bio-oil (Vegetable)		1	100% ('14~present)	Jeju oil boiler
	Bio-oil (Animal)		1	100% ('14~present)	Namjeju oil boiler
	SRF	RDF	0.5	1~5% ('10~'11)	Donghae CFB boiler
Waste energy	Bio-SRF	Wood chip	0.5	3~12% ('14~present)	Donghae CFB boiler
		Cashew Nut Shell	0.5	5~10% (ready)	Yeosu CFB boiler
		Coffee Residue	0.5	5~10% (ready)	Standard PC boiler

The amount of wood pellet imported ('16, 1.7million tons) is increasing year to year - Market share : 3 countries account for more than 90% of the total market ('17.5) Vietnam (55%) > Canada (20%) > Malaysia (17%)

- Average import price of wood pellet ('17.5) : 252,670 won/ton (190 Euro/ton) Try to adjust the RPS weight factor in case of co-firing of wood pellet

Biomass combustion boiler (1)

Benefits of co-combustion in a CFBC system and CCS-Biomass integrated system

7

Technology challenges according to fuel diversification (Fluidized Bed)

Item	Existing	Newly installed
Heating method	External Heater	Gas Burner + Direct Combustion Heat
Combustor Material	SUS 310	Refractory (Bottom) and Inconel
Configuration	1 combustor, 1 cyclone	1 combustor, 1 cyclone (+ extra cyclone)
Combustor Size	0.15m (Dia.) × 8m (Height)	0.15m × 8m
Gas Sampling Port	Cyclone (1ea), Bag filter (1)	Axial (6), Cyclone (2), Bag filter (1)
Fuel feeding rate	3-5 kg/hr	Max 15 kg/hr

Experimental data

Experimental data

NOx and SO₂ in case of co-firing of wood pellet (0%, 20%, 50%, 100%) with coal

SO2 & N2O ↓, NO ↑

$$NO + C \rightarrow 0.5N_2 + CO$$

$$NO + CO \rightarrow 0.5N_2 + CO_2$$
(Char, CaO in ash)
$$NH_3 + 1.25O_2 \rightarrow NO + 1.5H_2O$$

$$\frac{2}{3}NH_3 + NO \rightarrow \frac{5}{6}N_2 + H_2O$$

Experimental data

Comparison of components in fine fly ash (6nm - 10μ m)

Solid sampling (6nm-10µm) (FPS-4000+ELDI, Dekati)

connected after 1st cyclone

Main 2 components among Na, K, Cl, Ca, S, P (by XRF)

Avg. Size (µm)	Coal combustion	Wood pellet combustion		
0.0098	S, Ca			
0.0221	S, Ca			
0.0408	S, Ca			
0.0720	S, Ca	Cl, K		
0.1214	S, Ca			
0.1996	Ca, S			
0.3137	S, Ca			
0.4814	S, Ca	S, Ca		
0.7589	S, Ca	S, Ca		
1.2495	Ca, S	Ca, S		
2.0167	Ca, S	Ca, S		
3.0169	Ca, S	Ca, S		
4.4476	Ca, S	Ca, S		
7.3112	Ca, S	Ca, S		

Alkali chloride is dominant in fine particle when wood pellet fired

• Operation status of CFB boiler in Korea (include uses of bio and waste energy)

Company / Location(City)	Year	Capacity (steam t/h or MWe)	Fuel	Category	Supplier /Design
EWP/ Tonghae	1998/99	693 t/h ×2 (200 MWe ×2)	Anthracite /Biomass	Electric	Doosan/ Alstom
Hansol ²⁾ / Jeonju	2010	10 MWe	Biomass/ RPF	Co-Gen	AF Sweden
Gunjang Energy #3, #4 / Gunsan	2011/ 2014	250 t/h × 2	Coal /Pet. Coke	Co-Gen	Hyundai HI
KOSEP / Yeosu	2011 / 2016	1040 t/h × 2 (340MWe × 2)	Coal/Biomass	Electric	Doosan
Yeosu Co-gen Plant / Yeosu	2012	350 t/h × 2	Coal	Co-Gen	Hyundai HI
Hyundai Oil Bank #8, #9, #10 / Daesan	2012/2014 /2017	220 t/h × 2 330 t/h × 1	Pet. Coke	Co-Gen	Hyundai HI
Gimcheon Community Energy / Gimcheon	2012	330 t/h	Coal	Co-Gen	Hyundai HI
Han Ju Corp. / Ulsan	2015	250 t/h	Coal	Co-Gen	Hyundai HI
GS EPS / Dangjin	2015	105 MWe	Biomass	Electric	FW
KOMICO / Wonju	2015	10 MWe	RDF	Co-Gen	Hansol Seentec / KIER
OCI/ Gunsan	2015	150MWe × 2	Coal	Co-Gen	Doosan /FW
KOSPO / Samcheok	2016	1,572 t/h × 4 (500MWe × 4)	Coal/ Biomass	Electric	Hansol Seentec /FW
Hansol ³⁾ / Jeonju	2017	30 MWe	Biomass/ RPF	Co-Gen	Kawasaki
Hanhwa Energy / Gunsan	2018	100MWe	Coal	Co-Gen	FW

Overview (2)

Cebu CFB

- 100MW x 2units
- Commercial Op.
- #**1** : '**11**. 2
- #2 : '11. 5
- Designer
- Foster Wheeler
- Feature
- Compact Cyclone
- INTREX
- Sub-bituminous
- No co-firing

- Capacity
- 200MW x 2units
- Commercial Op.
- #1 : ′98. 9
- #2 : '99. 9
- Designer
- Alstom
- Feature
- FBHE
- FBAC
- Korean Anthracite
- RDF, WCF

- Capacity
- 300MW x 2units
- Commercial Op.
- #1 : '16. 9
- #2:'**11**.10
- Designer
- Foster Wheeler
- Feature
- Compact Cyclone
- w/o INTREX
- Wingwall Tube
- Wood pellet

Samcheok CFB

- Capacity
- 2units [550MW x 2-CFB x 1-Turbine]
- Commercial Op.
- #1:'16.12
- #2 : '17.6
- Designer
- Foster Wheeler
- Feature
- SC-CFB type
- 257bar/603°C
- Wood pellet (ready)

Lab test(1)

- First stage of thermal decomposition (230 ~ 370 °C) : Hemi-cellulose, Cellulose, Partially Lignin
- \bigcirc Second stage of thermal decomposition (370 ~ 420 °C) : Remaining Lignin
- Char combustion (420 ~ 500 °C): Char Residues
- ** Although the temperature (Tm1, Tm2) at the maximum pyrolysis rate increases with increasing heating rate, secondary pyrolysis process becomes weaker and weaker

Combustion characteristics of RDF according to temperature rise condition (TGA vs DTG)

- First stage of thermal decomposition (330 ~ 370 °C)
- \odot Second stage of thermal decomposition (370 ~ 420 °C)
- Char combustion (420 ~ 650 °C): Char Residues
- ** Although the temperature at the maximum pyrolysis rate increases with increasing heating rate, secondary pyrolysis process is eliminated

Commercial CFBC boiler(1)

Commercial CFBC boiler(2)

Commercial CFBC boiler(3)

Donghae CFB (30MW)– Only Biomass			
	Boiler	Andritz /POSCO CFB, constant Pr. Operation 107 ton/hr (84.5% efficiency) 96kg/m², 510°C	
	Turbine	SIEMENS / POSCO HP TBN-LP TBN Rating 30MW 93kg/m², 507°C	
DONGHAE BIOMASS POWER PLANT (30MW x 1)	Fuel	100% Domestic Bio-SRF 2,400-4,285 kcal/kg(Design 3,952) 600ton/day (3,000kcal/kg basis)	
	Total Efficiency	28.4% (Output 100% basis) Station service consumption 14%	
	Problem	Tube leakage (HT corrosion)/Fouling Poor fluidization due to clinker formation / Fuel transport	

Commercial CFBC boiler(4)

Donghae CFB (30MW) – High temperature corrosion by KCl

Reduction of high temperature corrosion after injection of ammonium sulfate

cf) Sometimes coal can be used to mitigate high temperature corrosion in biomass-fired boiler.

IV. Direction of power generation technology

Clean power through co-firing of renewable fuel, high efficiency, and CCS

- Large capacity power plant; co-combustion (PC < 4%, CFB > 10%)
- Middle & small (<100MW); combustion (FB and stoker boiler)</p>
- Forecast of fuel usage for co-firing/combustion: 1.4million tons after 2020
 - : Need to find and develop cheap domestic/overseas forest resources

KEPCO's Research Experience

Thank you