Renewable motor fuels from the forest industry via Pressurized Entrained flow Biomass Gasification (PEBG)

Introduction

PEBG Project

"Transportation Fuels from Forest Residues via PEBG"

- Project period 2009 2012
- PEBG Pressurised Entrained flow Biomass Gasification
- Combining Research, Industry and Society (Triple Helix)
- Slagging entrained flow gasification of low grade woodpowder
- Applied research and process development around a pilot plant with the objectives to provide:
 - I. Proof-of-concept
 - II. Scientific basis for a continuous development
- Close collaboration with industry

PEBG Project

Plant

- ✓ Nominal plant capacity: 1 MW at 10 bar
- ✓ Oxygen blown gasification
- ✓ Refractory lined reactor operating at 1200–1500
 °C
- ✓ Bubbling quench for cooling and separation
- ✓ Flaring of the product gas (side stream for analysis)

Direct biomass gasification

IVAB Gasifier

- ✓ Pilot plant for direct gasification of biomass powder to syngas (CO + H_2)
- ✓ Situated in ETC Gasification Centre
- ✓ Based on the PEBG concept
- ✓ R&D perfored by ETC and LTU
- ✓ Objective: To verify the technology concept for future commercialization

PEBG Process

Potential in Sweden

- I. Gasification and synthesis of black liquor (BLG) and biomass (PEBG) to motor fuels in 2050:
 23 (BLG) + 20 (PEBG) = 43 TWh/yr (45 % of fossil use)
- II. Decrease of the Swedish CO2 emissions by 20% or12 million Tonnes/year
- III. Production costs comparable to fossil based fuels (~5-8 SEK/litre diesel eq.)
- IV. Great business opportunities for the forest industry

PEBG Process

Main Challanges

- **✓** Efficient fuel preparation
- ✓ Robust and flexible fuel feeding
- ✓ Durable construction materials
- ✓ Part optimisation (burner, reactor, quench etc.)
- √ Process control optimisation
- ✓ Fuel and additive chemistry (ash properties)

Plant Commissioning

Steps:

- 1.1 Cold process with just nitrogen throughput at atmospheric pressure.
- 1.2 Calibration tests of the feeding and burner system in the plant.
- 1.3 Cold process with just nitrogen throughput at 5 bara pressure.
- 1.4 Cold process with nitrogen and steam wood powder at atmospheric pressure.
- 1.5 Controlled heat up of lining to 1000 C.
- 1.6 Warm process with just nitrogen throughput at 5 bara pressure.
- 1.7 Warm process with 'synthetic air' (oxygen/nitrogen blended) and stem wood powder at atmospheric pressure.
- 1.8 Warm process with 'oxygen enriched synthetic air' (oxygen/nitrogen blended) and stem wood powder at 2 bara pressure.
- 1.9 Warm process with pure oxygen and different wood powders up to 5 bara pressure

Primarily, bark, stumps and wood residues from pulp mills will be tested.

Plant Commissioning

So far:

- ✓ Gasification experiments with 40% oxygen performed
- √ ~28 h accumulated runtime
- ✓ Improved control and stability achieved
- √ Highest operated temperature so far 1350 °C
- √ Slightly pressurized ~ 2 bar(a)

Plant Commissioning

Camera view in reactor during heating

Reactor shell temperature

Fuel materials

Logging residues

- ✓ Make out ~45 % of total logging
- ✓ Difficult to handle during logging
- ✓ Special pretreatment required before the gasification process
- ✓ The content and composition of the ash can vary in wide ranges
- ✓ Increased use of wood residues will demand for more recyclable ashes

Fuel materials

	Pine [wt-%]	Spruce [wt-%]	
	dry basis	dry basis	
Stem wood	69	59	
Tops and branches	16	27	
Stubs and roots	15	14	

Fuel materials

	Stem wood ¹	Bark	Stumps	Wood chips	Wood pellets
Ash [dry wt-%]	0.4-0.5	3.5-8	1.5-17.8	0.8-1.4	0.4-1.5
Moisture [wt%]	5-60	45-65	26-57	20-50	7-12
Lower heating value, LCV [MJ/kg]	18.5-20	18.0-23		19.2-19.4	16.2-19
Density [kg/m ³]	390-640	320		$250-350, \\ 320-450^2$	500-780
Volatile matter [wt-%]	>70	69.6-77.2		76-86	>70
Ash melting point [°C]	1400-1700	1300-1700		1000-1400	>1120
C [dry wt-%]	48-52	48-52	50-53	47-52	48-52
H [dry wt-%]	6.2-6.4	4.6-6.8	5.7-7.2	6.1-6.3	6.0-6.4
N [dry wt-%]	0.1-0.5	0.3-0.8	0.1-0.2	< 0.3	0.27-0.9
O [dry wt-%]	38-42	24.3-42.4	40-42	38-45	~40
S [dry wt-%]	< 0.05	< 0.05	0.01-0.03	< 0.05	0.04-0.08
Cl [dry wt-%]	0.01-0.03	0.01-0.03	0.00-0.20	~0.02	0.02-0.04
K [dry wt-%]	0.02-0.05	0.1-0.4	0.02-0.06	~0.02	n.a.
Ca [dry wt-%]	0.1-1.5	0.02-0.08		~0.04	n.a.

¹ Without bark

² The first figure is for softwood and the second for hardwood

Summary

Main Conclusions

- I. Great potential for the forest residues
- II. PEBG A nice example of Triple helix R&D projects
- III. Successful start up of the pilot plant in April 2011
- IV. Robust and stable plant control and safety system
- V. Unique experimental data
 - ongoing experiments 2011 2012
- VI. Research is carried out in 7 WPs

Questions?

