Bed material-alkali interactions during fuel conversion in fluidized bed

Pavleta Knutsson

Through curiosity and knowledge towards a sustainable world

	Chalmers Unit			GoBiGas Unit		
	Bed inventory	Temperature in the bed, gasifier [°C]	Fuel flow, [kg _{daff} /h]	Fluidization level [kg _{steam} /h]	Temperatui in the boile [°C]	<i>Bed ma</i> Sand , b ilmenite
Chalmers	Olivine	810	268	160	880	iron ore: <i>Fuel:</i>
GoBiGas	Calcinated Serpentine	870	4600	2300	960	Coal, bi

Bed materials: **Sand**, bauxite, feldspar, ilmenite, manganese ores, iron ores *Fuel:*

Coal, biomass, waste,

Bed material role in fluidized bed

Gasification

- Tar formation in the product gas
- Agglomeration
 Bed material role
- Tar removal catalytically active material
- ✓ Low agglomeration potential

Olivine , FeMgSiO₄

Bed materials Sand, bauxite

Biomass components K and Ca

Combustion

- Hot and cold spots in the reactor
- Agglomeration

Bed material role

- Oxygen transport within the reactor
- ✓ Low agglomeration potential

Ilmenite, FeTiO₃

Bed material interactions

Bed material interactions are crucial for both agglomeration and activation

Role of Ca and K for agglomeration

	Bed material + ash	xrd_{K}	FactSage	ation potential
¥	K ₂ CO ₃ +silica sand	KSiO ₄	K ₂ Si ₂ O ₅ (s)	strong
	K ₂ CO ₃ +bauxite	KAIO ₂	KAIO ₂ (s)	medium
	K ₂ CO ₃ +silica sand+bauxite	KAISiO ₄	KAISiO ₄ (s) KAIO ₂ (s)	medium
Ca ²⁺	$CaCO_3$ + silica sand	CaCO ₃ , SiO2	Equilibrium composition not obtained	none
	CaCO₃+bauxite	CaCO ₃ , Al ₂ O ₃ , AlO(OH)	CaAl ₂ O ₄	none
	CaCO ₃ +silica sand+bauxite	CaCO ₃ , SiO ₂ , Al ₂ O ₃ , AlO(OH)	CaAl ₂ Si ₂ O ₈ (s), Ca ₂ Al ₂ SiO ₇ (s)	none

CHALMERS UNIVERSITY OF TECHNOLOGY

Role of Ca for material activation

• Ca-layer has been observed at "active" state around multiple bed materials particles

Knutsson, P., Schwebel, G., Steenari, B.M., Leion, H. Effect of bed materials mixing on the observed bed sintering (2014) CFB-11: Proceedings of the 11th International Conference on Fluidized Bed Technology, pp. 655-660.

CHALMERS UNIVERSITY OF TECHNOLOGY

Combustion – ilmenite case, activation

- No agglomeration is observed
- Oxygen carrying ability increases with time of exposure
- K,Ca-enriched layer (ash layer) increase in thickness with time of exposure

Corcoran, A., Marinkovic, J., Lind, F., Thunman, H., Knutsson, P., Seemann, M. Ash properties of ilmenite used as bed material for combustion of biomass in a circulating fluidized bed boiler (2014) Energy and Fuels, 28 (12), pp. 7672-7679

K and Ca distribution in the coating

CHALMERS

• Ca and K signal found at the same locations in the outer layer

Coating changes with time

• Ca and K signal found at the same locations in the outer layer

Ca and K state in the formed layers

- Coexistence of mixed Ca and K at the "activated" materials
- K and Ca are predominantly as oxides at the outermost layer

Knutsson, P., Cantatore, V., Tam, E., Seemann, M., Panas, I. Role of potassium for enhancement of the catalytic effect of calcium oxide for tar reduction (2018), Applied Catalysis B: Environmental

Role of K in CaO

- Replacing two Ca²⁺ ion in the lattice by two K⁺ is able to activate O₂ by binding it to the vacancy
- Theoretical calculations predict the oxidizing capacity of a K-enriched CaO

Knutsson, P., Cantatore, V., Tam, E., Seemann, M., Panas, I. Role of potassium for enhancement of the catalytic effect of calcium oxide for tar reduction (2018), Applied Catalysis B: Environmental

Mechanism challenges

- Formation of mixed oxide initiating ion structure? Is it CaO?
- Where is the border line between activation and agglomeration?

Thank you for your attention!

UNIVERSITY OF TECHNOLOGY