

75th IEA-FBC Meeting Skive, Denmark 23th-25th October 2017

H₂ Production from Biomass Feedstocks Utilising a Spout-Fluidised Bed Reactor

Peter Clough, Liya Zheng, Paul Fennell

p.t.clough@cranfield.ac.uk, p.fennell@imperial.ac.uk

How is H₂ produced?

http://hydrogeneurope.eu/wp-content/uploads/2017/01/20170109-HYDROGEN-COUNCIL-Vision-document-FINAL-HR.pdf

SMR process description

Better option

SMR + CaL = SER

Imperial College
LondonSER process description - Simplified

Imperial College SER process description London H_2 out PSA or Waste gas out other purification >90% H₂ $CaCO_3 + Ni$ $CH_{1.6}O_{0.8} + 1.2H_2O + CaO \rightarrow$ $2H_2 + CaCO_3$ Reformer / Carbonator T ≈ 650 °C P≈1atm CH₄ or biomass or other fuel CaO + Ni H_2O (+ small amount of O_2)

SER process description

Imperial College SER process description London CO₂ for H_2 out storage PSA or Waste gas out Water out Water other removal purification $CO_2 + H_2O$ >90% H₂ $CaCO_3 + Ni$ Spent CaO + NiO $CH_{1.6}O_{0.8} + 1.2H_2O + CaO \rightarrow$ $2H_2 + CaCO_3$ Reformer / Calciner Carbonator T ≈ 950 °C T ≈ 650 °C Fresh CaO + NiO P≈1 atm P≈1 atm CH₄ or biomass or other fuel CaO + Ni H_2 $CH_4 O_2$ H_2O (+ small reduction amount of O_2) CaO + NiO

Reactor design

Imperial College London **Reactor Design and Construction** 그님 Thermocouple Inlet 70 Counter Weight Copper O-Ring Flange -Flanges 60 -Half Moon Positioning Ring Distance from bottom of reactor / cm Support Ο -Reactor Support 50 40 Bed Thermocouple Quartz Liner 30 Furnace -Furnace 20 1 ¹/₂" nb sch80 Incoloy 800HT Pipe 650mm 10 Inlet Tube Flange 0 -Half Moon Positioning Ring 200 400 600 0 Copper O-Ring Temperature / °C

Biomass/Coal feeding system

Rotary hopper feeder

Combined Particles

Imperial College Sorbent and catalyst materials

Maximise

- Particle porosity
- Similarity of reaction kinetics for carbonation and reforming
- Sorbent carrying capacity
- Particle and individual component lifetime
- Particle strength
- Resistance to attrition
- Ability to reuse/recycle spent material

Minimise

- Material sintering
- Pore blocking/product layer resistances
- Unintended inter-component interaction
- Expense, difficulty and time to manufacture
- The quantity of unreactive material

Degradation study of a novel polymorphic sorbent under realistic post-combustion conditions https://doi.org/10.1016/j.fuel.2016.08.098

Imperial College London Supported material preparation method

Calcium looping carrying capacity Imperial College supported and unsupported combined particles

C₂S supported combined particle (CaO and NiO, 300 - 500 µm) CO₂ carrying capacity in moles of CO_2 absorbed per mole of CaO as a percentage.

London

SER reaction conditions

Conditions:

- 650 °C ± 8 °C
- 1 atm
- Steam 20 vol.%, N₂ balance \rightarrow S:C = 1.2 $CH_{1.6}O_{0.8} + 1.2H_2O + CaO \rightarrow 2H_2 + CaCO_3$
- *U/U_{mf}* ≈ 3
- 80 cm³/s @ 293 K
- Bed of sand, CaO and Ni (content and particle sizes varied)
- 0.9 g/min Oak biomass (212 300 μm)
- NiO \rightarrow Ni reduction @ 650 °C for 30 minutes in 5 vol.% H₂
- Combined particles 14, 26, 36 and 47 wt.% NiO = 11, 21, 28 and 37 wt.% Ni

Total amount of CO_2 that could be produced from 1 min of biomass feeding:

~0.04 moles $CO_2 \therefore \approx 1.9 \text{ g CaO}$

Typical experimental profile

Imperial College
LondonSER with unsupported combined particles

- Steady state period
- H₂ vol.% greater with more Ni
- H₂ vol.% greater with smaller particles
- Inefficient gasification or diffusional issues
- Approaches thermodynamic equilibrium
- FactSage thermodynamic only

Imperial College London SER with 26 wt.% NiO C₂S supported combined particles

CH₄ decreased significantly with the addition of Si-based support

Gas yield / mmol/g biomass

Imperial College SER with combined particles

- Unsupported and C₂S supported 26 wt.% Ni produced 60 and 70 vol.% pure H₂, respectively
- 60 mmol H₂ / $g_{biomass} \approx 120 g_{H_2}$ / kg _{biomass}
- Average closure of 100.4 ± 15.4 % for C, H and O Unsupported particles
- Average closure of 115.0 \pm 10.7 % for C, H and O C₂S supported particles
- Average CO_2 capture of 32.8 % for 300 500 μ m Unsupported particles
- Average CO_2 capture of 55.7 % for 300 500 μ m C_2S supported particles

Operational issues

- Attrition of particles
- Coking on particles
- Coking within the reactor

Conclusions

- Combined NiO and CaO particles produced (some with C₂S support)
- Tested SER within a fluidised bed reactor with solid biomass feeding
- Stoichiometric steam to carbon ratios
- H₂ purity and yield did approach equilibrium
- Si-based support dramatically affected CH₄ production
- Demonstrated ability to balance SER reactions with gasification
- Coking limited reactions and operation

75th IEA-FBC Meeting Skive, Denmark 23th-25th October 2017

H₂ Production from Biomass Feedstocks Utilising a Spout-Fluidised Bed Reactor

Peter Clough, Liya Zheng, Paul Fennell

p.t.clough@cranfield.ac.uk, p.fennell@imperial.ac.uk