Fludized bed gasification and co-gasification of biomass and wastes

Giovanna Ruoppolo Istituto di Ricerche sulla Combustione_CNR

Giovanna Ruoppolo IEA task 14° May, Ischia

Overview on our activity

Gasification of biomass

- Tar abatement with in bed catalyst
- Reducing of segregation phenomena

Co-gasification

Co-gasification of biomass and coal

Co-gasification of biomass and waste

 $oldsymbol{O}$

ര

Gasification process

The main challenges of biomass gasification are:

Good control of temperature in the reactor
High heating rate (hundreds of degrees per second) and high temperatures (around 800°C) are necessary to maximize the gas yield

TARS conversion

TARs condense in the cold parts \Rightarrow plugging of tubes or agglomeration phenomena

TARS removal by filtration \Rightarrow lost of efficiency since they still contain energy

Fluidized Bed Gasifiers

Catalytic tar conversion

Cleaned gasification gas contains mostly gas phase

(light hydrocarbons + H_2 , CO_2 , CO, H_2O)

The catalytic tars conversion can both decrease tar production and modify gas composition.

<u>1: Primary method</u> :	2: Secondary method:			
the catalyst is mixed	the catalyst is placed			
with biomass directly	down stream the			
inside the gasifier.	gasifier.			
Single-stage process	Dual stage process			

Using a fluidized bed reactor it is possible to realize a single stage process using the catalyst directly inside the reactor and coupling good control of temperature and high heating rate of the biomass fuel.

Fludized bed reactor

The fluidized bed gasifier consists of two vertical stainless steel tubes connected by a conical adapter, the lower tube has an Internal Diameter (ID) of 140 mm and is 1010 mm in height, and the upper tube has an ID of 200 mm and is 1800 mm in height.

boom vacuatio valve

Experimental rig

Gasification of biomass Tar abatement with in bed catalyst

Materials

Biomass characteristics: commercial pellet

Moisture (%wt)	Volatiles (wt%)	Fixed carbon (wt%)	Ash (wt%)	C (%wt)	H (%wt)	O (%wt)	LHV (wet fuel)	
8.5	74	17.1	0.3	49.2	5.89	44.5	18.5 MJ·kg ⁻¹	49

Bed material characteristics:

Haider and Levenspiel, Powder Techn., (1989) 58, p.63, Eq. 21 Geldart "Gas Fluidizat. Techn.", 1986 J. Wiley & Son - eq 2.27 (dp>100 mm)

Material	Density (kg/m ³)	Amount loaded (kg)	Size (µm)	u _{mf} (m/s)	u _t (m/s)
quarzite	2500	5.0	250	2.0.10-2	1.7
olivine	3200	6.4	250	2.8·10 ⁻²	2.0
calcined dolomite	1600	3.4	170	0.6.10-2	0.5
catalyst	1800	3.5	150	0.5.10-2	0.4

5.5 (wt%)Ni on γ -Al₂O₃ (Sasol) with high mechanical resistence (Ka=0,1) prepared by wet impregnation starting from nickel nitrate and calcined at 850°C. Surface area =156m²/g. Active phase nickel aluminate

Biomass gasification test: effect of $\boldsymbol{\varphi}$ and S/F ratio

C

Gasification of biomass Reducing of segregation phenomena

Decreasing of segregation phenomena: adding of a central spout

13

Effect of j on tar concentration

C

Effect of j on elutriation rate

C

15

Co-gasification Biomass and coal

option for overcoming the limitation of the low energetic density of biomasses since coal has almost double energetic density and the temporarily lacking of biomass availability due to its seasonality

materials

Pelletization of the raw material has shown positive effects in terms of homogenization of the original material

Pelletization can improve the raw fuel mechanical properties and, in turn, the carbon conversion efficiency during fluidized bed conversion

Fuel	Wood pellet	GBC /wood pellet (30% w/w)
Dim. pellet (D x L), mm	6x20	6x20
Umidità, % w/w	8,5	9,4
Volatili, % w/w	74,1	66,7
C Fisso, % w/w	17,1	22,8
Ceneri, % w/w	0,3	1,1
C, % w/w dry basis	49,3	55,1
H, % w/w dry basis	5,9	5,7
N, % w/w dry basis	<0.1	0,1
O, % w/w dry basis	44,4	38
LHV, MJ/kg	18,5	21,7

biomass and coal co-gasification

 $U = 0.35 \text{ m/s}, \Phi = 0.17, \Psi = 0.64.$

C

18

C

Fine elutriated

The gasification of wood/coal pellets gives rise to a substantially higher elutriation rate of fine particles with respect to wood pellets, as a consequence of the larger ash and fixed carbon content in the wood/coal pellets as well as the lower char reactivity

Co-gasification Biomass and waste

The possibility of producing a syngas from residual materials prone for conversion into methanol was analyzed

Materials

Fuel:

Biomass (75wt%): Dry olive husk produced in substantial amounts in the Campania *region (75wt%)*

Waste (25wt%): Polyethylene Terephthalate (PET) from packaging of drink bottles and Tyre granules, obtained by proper demolition of automobile.

Bed material:

 γ -Alumina prevents the agglomeration phenomena associated with the use of olive husk

Mixed Al and Ni/γ-Al2O3 (60%wt). Non different performances with the 100%wt catalyst

FUELS	OH	OHPET	OHTYRE
Pellets dimensions (diameter x length), mm	6 x 20	6 x 20	6 x 20
Moisture, wt.%	8,9	6.2	14. 8
Volatiles, wt.%	68,2	74. 5	63.2
Fixed carbon, wt.%	19,7	16.6	17.9
Ash, wt.%	3,2	2.7	4.1
Carbon, wt.% on dry basis	55,2	59.3	53.3
Hydrogen, wt.% on dry basis	5,9	7.2	6.1
Nitrogen, wt.% on dry basis	1.0	0.4	0.5
Oxygen, wt.% on dry basis	37,9	33.1	40.1
Low heating value, MJ/kg	19,3	22.8	22.3

Results: gas profiles

A stable state observed for the all time suggests that whatever are the adopted experimental conditions:

•No problems in the fuel feedstock handling and metering devices.

•agglomeration problems do not occur

catalyst deactivation does not occur

ര

Results: average gas composition

The presence of PET and TYRE strongly enhances the H₂ production

Results: quality of syngas

- The H_2/CO ratio is always higher than that obtained with the olive husk pellet confirming that the co-gasification is a suitable strategy to produce a syngas with the H_2/CO required for the methanol synthesis
- The yield of methanol is sensitive to the $H_2/(CO + CO_2)$ ratio, while the selectivity to the CO_2/CO ratio

When the CO_2/CO ratio is >1, the selectivity of methanol decreases sharply

With a partial removal of CO_2 can be changed greatly the CO_2/CO in the feed gas

Results: tar analysis

- The level of tar decreases as the temperature increases.
- The presence of catalyst reduces the amount of tar.
- The tar decrease is reflected in an higher formation of light hydrocarbons C_2H_6 and C_2H_4 .

Entrained char

The temperature increase reduces the carbon elutriated
The OHPET pellets show a lower carbon elutriation rate probably due to the higher reactivity of the fuel component

Conclusions

- The presence of a catalytic bed, especially in the case when an "ad hoc" reactor configuration is used: adoption of a central jet in addition to the conical distributor, increases hydrogen rich syngas yield and decreases tar production. However some expected negative effects of such configuration on attrition phenomena has been highlighted.
- The effect of equivalent ratio and the presence of steam affect the performance of gasifier less than the presence of catalyst provided that the segregation phenomena are negligible.
- The use of pellets results into beneficial effects on solid particles emissions but when mixed pellets are used there is an important role played by properties of the parent fuels
- Among the mixed pellet tested, the biomass/plastic pellets exhibited promising results in terms of the hydrogen yield even if they suffered from a higher production of TAR

Thank you for the attentions

References

Paola Brachi, Riccardo Chirone, Francesco Miccio, Michele Miccio, Antonio Picarelli, Giovanna Ruoppolo (2014) <u>Fluidized bed co-</u> <u>gasification of biomass and polymeric wastes for a flexible end-use of</u> <u>the syngas: Focus on bio-methanol</u> in Fuel

Giovanna Ruoppolo, Francesco Miccio, Paola Brachi, Antonio Picarelli, Riccardo Chirone (2013) <u>Fluidized Bed Gasification of Biomass and Biomass/Coal Pellets in Oxygen and</u> <u>Steam Atmosphere</u> in Chemical Engineering transactions

G. Ruoppolo, P. Ammendola, R. Chirone, F. Miccio (2012) <u>H2-rich syngas production by fluidized bed gasification of biomass and plastic</u> <u>fuel</u> in Waste management

Ruoppolo, G; Miccio, F; Chirone, R (2010) <u>Fluidized Bed Cogasification of Wood and Coal Adopting Primary Catalytic</u> <u>Method for Tar Abatement</u> in Energy & fuels

