

University of Stuttgart

Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

Tar and sulfur measurement and monitoring for biogenic residue gasification

IEA Task 33 Workshop Gas cleaning, experiences, new developments, analytics and diagnostics 6th June 2019, Karlsruhe

> **M. Schmid**, G. Scheffknecht

Agenda

- gasification processes at IFK
- FID online tar analyzer TTA300
- sulfur measurement at IFK
- liquid tar sampling / tar protocol at IFK
- planned new online GC for tar and impuritiy measurement
- summary and conclusion

Motivation

- mitigation of climate change: to abandon the utilization of fossil carbon
- · on contrast: continuing demand of carbon-based products
 - plastics, chemicals
 - fuels for transport (eg. kerosene), fuels for flexible heat and power production
- \rightarrow utilization of carbon from biomass AND recovery of carbon from waste materials

gasification as conversion process:

- Fluidized bed gasification \rightarrow high efficiency, high feedstock flexibility
 - curent research at IFK:
 - sorption enhanced gasification (SEG)
 - steam-oxygen gasification

Fluidized bed Gasification Processes at IFK

SEG

Steam-oxygen gasification

(Oxy-)SEG (Sorption Enhanced Gasifiaction)

- in-situ CO₂ capture: Limestone shifts CO₂ vom gasifier to regenerator
- H₂ rich and CO₂ lean syngas
- CO₂-rich off-gas for storage

• autothermal single bed gasification

- syngas suitable for synthesis
- applicable for high-ash containing fuels such as dried sewage sludge

University of Stuttgart - Institute of Combustion and Power Plant Technology - M.Sc. Max Schmid

Fluidized bed research and pilot facilities (5-200 kW_{th})

3,5 m		
Height	3,5-12 m	
Fuel rate	1-5 kg/h	
Fluidization	BFB/CFB	

20 kW_{th} (el. heated)

200 kW_{th} (not el. heated)

Height	6-10 m				
Fuel rate	20-50 kg/h				
Fluidization	BFB/CFB				

University of Stuttgart - Institute of Combustion and Power Plant Technology - M.Sc. Max Schmid

produced by Ratfisch Analysensysteme

- measurement total tar concentration
- semi-continuous measurement every 1,5 min
- device operation temperature 300°C
- state of the art software and easy operation
- suitable for tar concentration > 1 g/m³

\rightarrow raw gas

Connec	tion Co	ntrol Cali	bration	Operatio	n Anal	ysis	Filel/C	Debu	g		
	Filter	total			050	•				Measurement range:	
Peak	110.73	129.22	∫ FID Signa	Runs:	250	T		+	++	Extended	
HC	42306.3	46003.3	mgC/m³	mgC/m ³ Bun interv	Run interval	10					
Tar	36	597.0	mgC/m ^a	(seconds)	10		T	+		High	
FID Signal	0.0	0.0	*	Status		Sta	ind-By			Low	
40	N				ready for measurem				RUN		
							F	Peal	total	maC/m ³	
20				20	16-03-02	15:32	:52 1	09.53	128.41	3868.4	
				20	16-03-02	15:34	18 1	10.80	129.29	3694.1	
0		Seconda		20	16-03-02	15:35	:44 1	10.73	129.22	3697.0	
							connect	ed:5588	2016-	03-02 15:42:27	

- current status:
 - protoype at IFK is functional, but still requires frequent maintainance
 - design for low maintainance TTA300 device available at Ratfish
 - next step: production of first serial device

Analyzer measurement principle – loading phase

Analyzer measurement principle – analyzing phase

Non-condensable HC

"Tars" (condensable HC)

•

Comparative measurements with "Tar Protocol"

Validation of measurement principle:

- Measurement cycle duration of 84 seconds corresponds to over 300 measurement cycles.
- Online measurements follow the wet chemical comparative measurements very clearly over total timeframe.
- Changes in tar concentrations by fluctuations in air ratio can be detected immediately.

ECN Classification:

2: Heterocyclic HC (e.g. pyridine, phenol, cresol) 3: 1-ring HC (e.g. xylene, styrene toluene) 4: 2, 3-ring PAH (e.g. naphthalene, anthracene, phenanthrene) 5: > 3-Ring PAK (e.g. fluorathene, pyrene, chrysene

http://www.thersites.nl/classification.aspx

Comparative measurements with "Tar Protocol"

- Absolute deviations in comparative measurements also in other gasifier operating conditions in a range of max. 1 g m⁻³.
- At *low* tar concentrations (< 3 g m⁻³) additional derivation is getting higher

TTA 300 has good comparability to tar protocol and is an available device for raw gas monitoring

sulfur measurement at IFK

tar protocol at IFK

Sewage sludge gasification 20 kW gasifiaction tests

ıfk

Tar and sulfur reduction with limestone as additive/sorbent

fuel: dried sewage sludge

analysis	in % kg/kg
H ₂ O	6.5
ash	47.6
С	51.0
Н	6.9
0	32.0
Ν	7.5
S	2.4
CI	0.2

Online gas measurement and sample gas preparation at IFK

Low cost H₂S and COS measurement via micro-GC

- gas washing with isopropanol and water nesecessary to protect online gas analyzers
- sour washing liquid enables H₂S and COS to pass the gas washing bottles
- H₂S and COS can be measured down to ~5 ppm

Sulfur reduction with limestone as sorbent

 $CaO + H_2S \rightarrow CaS + H_2O$ $CaO + COS \rightarrow CaS + CO$

- higher limestone additive ratio reduces H₂S concentration
- H₂S concentration heads torwards equilibrium for high additive ratios
- micro-GC als reliable sulfur measurement device

Tar protocol – wet chemical sampling

IFK's wet chemical tar sampling system

- Absorption liquid: Isopropanol
- Liquid is sampled and analysed
 - gravimetrically at IFK
 - GC-FID at FAU
 - GC-FID and GC-SCD at PSI \rightarrow additional N and S-containing tars for residue gasification

Sar reduction with limestone as bed additive

tar classification

dimethylhydantoin

thiophene, benzothiophene

University of Stuttgart - Institute of Combustion and Power Plant Technology M.Sc. Max Schmid

higher limestone additive ratios

needed for GC-MS tar reduction

Gravimetric tar composition for residue gasification

University of Stuttgart - Institute of Combustion and Power Plant Technology - M.Sc. Max Schmid

planed online GC for gasification

Online-GC for gasification

planed acquisition at IFK

requirements:

- sample line temperature incl. valves min. temp. 250°C
- measurement time < 30 min
- measured components
 - BTX (→ biggest fraction of "tars")
 - $C_1 C_6$
 - NH₃
 - HCľ
 - H₂O
 - permanent gases
- online coupling to IFK's gasification rigs \rightarrow instant data

Summary and conclusion

- TTA 300 has good comparability to tar protocol and is an available device for raw gas monitoring
- H₂S and COS measurement with mirco-GC is reliable for raw gas in residue gasification
- liquid sampling / tar protocol is still needed to characterize tars
 - for residue gasification additional GC detectable tar species need to be considered
 - solid formation needs to be considered for gravimetric analysis
 - endeavor to reduce liquid sampling effort by PSI's automatic liquid quench system
- new online GC planned at IFK

Thank you!

M.Sc. Max Schmid

e-mail max.schmid@ifk.uni-stuttgart.de phone +49 711 685-63394 fax +49 711 685-63491

University of Stuttgart Institute of Combustion and Power Plant Technology Pfaffenwaldring 23 • 70569 Stuttgart • Germany