Status and Developments in Fischer-Tropsch Synthesis

Issues of Importance to Biomass Conversion and Jetfuel Production Erling Rytter Institute of Chemical Engineering, NTNU 25. May 2016

The Fischer-Tropsch Process

Figure: Based on Dag Schanke, Statoil, 2009

Key Challenges in Biomass-to-Fuels

Challenging feedstock

Key FT related technology elements

- Catalyst
 - Iron or cobalt
- Reactor technology
 - Fixed-bed
 - Slurry
 - Microchannel
- Process design FT
 - The H₂/CO ratio
 - Conversion and recycle
- Product separation and upgrading
 - Jetfuel
- Overall process design
 - FT integration with biomass treatment and gasification
 - Water management

Potential providers of Cobalt Fischer-Tropsch Technology

Technology provider	Support/ modifier	Promoter	Reactor type	Reactor scale (bbl/d)	Reference
Sasol	γ-Alumina/ Si (TEOS)	Platinum	Slurry	16,000	1
Shell	Titania	Mn; V	Fixed-bed	6,000	2
GTL.F1	Ni-aluminate/ α-Alumina	Rhenium	Slurry	1,000	3
ENI/IFP/ Axens	γ-alumina/ SiO ₂ ;spinel	?	Slurry	20	4
Nippon Oil	Silica/Zirconia	Ruthenium	Slurry	500	5
Syntroleum	γ-Alumina/ Si (TEOS); La	Ruthenium	Slurry	80	6
BP	ZnO	?	Fixed-bed		7
Exxon Mobil	Titania/ γ-Alumina	Rhenium	Slurry	200	8
Conoco-Phillips	γ-Alumina/ Boron	Ru/Pt/Re	Slurry	400	9
Compact GTL	Alumina?	Re?	Microchannel	500	10
Oxford cat. /Velocys	Titania-silica	Re	Microchannel	1000	11

1. P.J. van Berge and S. Barradas, Catalysts, patent US7365040 B2, Sasol Technology, 2008.

2. R.J. Dogterom, C.M.A.M. Mesters and M.J. Reynhout, Process for preparing a hydrocarbon synthesis catalyst, PCT patent WO2007068731 A1, Shell, 2007.

3. E. Rytter, T.H. Skagseth, H. Wigum and N. Sincadu, Enhanced strength of alumina based Co Fischer-Tropsch catalyst, PCT patent WO 2005072866, Statoil, 2005.

4. G. Bellussi, L.C. Carluccio, R. Zenarro and G. del Piero, Process for the preparation of FT catalysts with a high mechanical, thermal and chemical stability, WO2007009680 A1, ENI/IFP, 2007.

5. M. Ikeda, T. Waku and N. Aoki, Catalyst for Fisher-Tropsh synthesis and method for producing hydrocarbon, PCT patent WO2005099897 A1, Nippon Oil, 2005.

6. J. Inga, P. Kennedy and S. Leviness, Fischer-Tropsch process in the presence of nitrogen contaminants, PCT patent WO2005071044, Syntroleum, 2005.

7. J.J.H.M. Font Freide, J.P.Collins, B. Nay and C. Sharp, Stud. Surf. Sci. Catal., 163 (2007) 37.

8. S. L. Soled, R. A. Fiato and E. Iglesia, Cobalt-ruthenium catalyst for Fischer-Tropsch synthesis, EU patent appl. 87310896.3, Exxon, published Jun 1989.

9. N. Srinivasan, R.L. Espinoza, K.L. Coy and K. Jothimurugesan, Fischer-Tropsch catalysts using multiple precursors, patent US6822008 B2, ConocoPhillips, 2004.

10. http://www.compactgtl.com

11. http://www.velocys.com

Iron or cobalt ?

- The hydrogen issue
 - Iron will produce needed hydrogen in-situ by the water-gas-shift reaction CO + $H_2O \rightarrow CO_2 + H_2$
 - Cobalt needs a separate WGS reactor
 - The best choice is not obvious. Need process simulations.
- Cobalt has significantly lower deactivation rate
- Cobalt provides more desired product/less byproducts (oxygenates)
- Iron is cheap

Cobalt is the choice for biomass to jetfuel

Reactor technologies Tubular fixed-bed

- Catalyst-particles in long, small diameter tubes
- Syngas inlet at top
- 2-phase mixture (wax + gas) exits bottom
- Boiler feed water in reactor shell
- Heat removal by steam generation

Strong points

- Long established scale-up methodology
- Strong economy of scale to maximum size
- Plug flow behavior
- "Simple" operations
- Very high strength catalyst not required
- Generally excellent catalyst/wax separation
- Bed inlet acts as poison removal zone
- Simple, in-situ catalyst regeneration process

Adapted and modified from Velocys

Reactor technologies Slurry bubble column

Principles of design and operation

- Catalyst-wax slurry in reactor shell
- Low catalyst volume fraction (< 20%)
- Syngas bubbled through slurry
- Wax removal by internal filtration
- Boiler feed water in reactor tubes
- Heat removal by steam generation

Strong points

- Isothermal behavior thermally stable
- Generally robust to upsets
- Very strong economy of scale
- Accommodates high activity catalysts
- Low DP (liquid head and gas distributor)
- Small particles not mass transfer limited
- Catalyst replacement on line
- High on-stream factor
- Tail gas recycle only to achieve high conversion

Adapted and modified from Velocys

Demonstration of the GTL technology

Old slide

Reactor technologies Microchannel

Principles of design and operation

- Particulate catalyst in small channels
- High catalyst volume fraction (~50%)
- Syngas downflow, products exit bottom
- Cross-flow coolant water/steam generation
- Heat removal by steam generation

Strong points

 $0.1 - 5 \, \text{mm}$

 $0.1 - 5 \, \text{mm}$

Syngas

coolant

FT products

- Isothermal behavior thermally stable
- Extremely robust to upsets
- Strong economy of mass manufacturing
- Accommodates high activity catalysts
- Installed spares relatively cheap
- High on-stream factor
- Tail gas recycle only to achieve high conversion
- Extremely high volumetric productivity
- Ease of modularization

Adapted and modified from Velocys

Velocys Microchannel FT Reactor Score Card

Property	Tubular Fixed Bed	Slurry Bubble Column	Velocys Microchannel	
Flow Patterns	Plug flow	Well-mixed	Plug flow	
Reactor Scale-up Methodology	Easy/known	Not well-known	Easy/known	
Heat Transfer Limitations	Very high	Low	Low	
Mass Transfer Limitations	High	Low	Medium	
Thermal Stability	Poor	Excellent	Excellent	
Catalyst Reaction Rate	Low	Moderate	Very High	
Reactor Volumetric Production	Low	Low	High	
Differential Pressure	Moderate	Low	Moderate	
Gas Recycle Requirements	High	Moderate	Low	
Catalyst Wax Separation	Excellent	Problematic/Difficult	Excellent	
Catalyst Strength Requirement	Low	High	Low	
Regeneration Equipment	Minimal	Significant	Minimal	
Regeneration Ease	Difficult	Complicated	Simple	
Catalyst Replacement	Offline-slow	On-stream	Offline-rapid	
On-stream Factor	Low	High	High	
Feed Poisoning	Local	Global	Somewhat Local	
Upset Robustness	Low	Generally Good	High	
Shutdown Robustness	Good	Poor	Excellent	
Modularization	Low	Low	High	
Mass Manufacturing Economies	Low-Medium	Poor	Excellent	
Boiler Feed Water Quality	Low	Low	Moderate	
Capital Cost per BPD	High	Low (large plants)	Low (distributed plants)	

Rytter's provisional FT reactor scorecard

Property	Tubular fixed-bed	Slurry bubble column	Microchannel	
Flow pattern	Plug flow	Back-mixed	Plug-flow	
Reactor design maturity	Known	Known by licensors	Novel	
Heat transfer limitations	High	Low	Low	
Mass transfer limitations	High	Low	Medium	
Thermal stability	Poor	Excellent	Excellent	
Catalyst activity	Low	High	High	
Global reactor reaction rate	Low	Low	Medium	
Differential pressure	Moderate	Low	High	
Gas recycle	High	Moderate	Moderate	
Catalyst-wax separation	Excellent	Known by licensor	Excellent	
Catalyst strength requirement	Moderate	High	Moderate	
Regeneration equipment (ease)	Minimal	Needed	Minimal	
Regeneration efficiency	Moderate	High	Moderate	
Catalyst replacement	Off-line	On-stream	Off-line	
On-stream factor	Moderate	High	Moderate	
Upset robustness	Low	Moderate	Low	
Modularization	Medium	Medium	High	
Economy of scale	Moderate	High	Low	
Boiler feed water quality	Low	Low	Moderate	
Capital cost	High	High	High	
Overall technology readiness	Excellent	Moderate-proven	Demo-scale	

The issue of the H_2/CO ratio

H H H H H H H H H H H H H H H-C-C-C-C-C-C-C-C-H H H H H H H H H

 C_8H_{18} H/C = 2.25

 $17 H_2 + 8 CO \rightarrow C_8 H_{18} + 8 H_2 O H_2/CO = 2.125$

- The H_2/CO consumption ratio is ca. 2.1
 - Feed to the FT reactor should, however, be significantly lower than 2.
- Composition of the syngas depends heavily on the gasification technology and operation
- The syngas composition needs to be predictable within reasonable ranges.

What has been reported for syngas composition ?

Tech- nology	Cond- itions	СО	H ₂	H ₂ / CO	CO ₂	CH4	C ₂ -C ₅	H₂S	N ₂	Comment/ reference
					Entrained-	flow				
Chemrec	Air	8-12	10-15		15-17	0.2-1			55-65	[58,69]
chemiee	02	30	43	1.4	27	1		1.4	-	25–40 ppm COS
Choren	0 ₂	35-40	35-40		balance	small			small	[70]
KTI/Lurgi	Enr.air	50	27	0.54	14				6	[71]
UHDE		>85 (CC) + H ₂)		6-8	<0.1				[R7]
	Fluidized-bed									
Cutec	Enr.air	22	31.6	1.4	33.6	7.9	1.8		3	[72]
ECN	Air	29	31	1.1	20	14	5			[61] 45 g/m ³ tar
Enerkem	0 ₂	20-24	20-24		30-35	8-12	10-20			[73]
Foster Wheeler	Air	15.5- 17.5	10-12		14-17	5-7			45-50	Värnamo plant [74]
Güssing	15wt% H ₂ O	29.1	37.7	1.30	19.6	10.4	3.2		0.5-0.7	Tar free [55]
				Fixe	ed-bed or m	oving bed				
Cortus	Stoom	14.9	70.3	4.7	22.9	1.8				[76]
Cortus	Steam	16.2	60.6	3.6	21.8	1.4				[75]
Blue tower	Steam	20	50	2.5	25	5				[76]
Plasma										
Westing- house	23wt% H₃O	67.5	26.6	0.39	5.9					N ₂ free basis [77]

From: Erling Rytter, Esther Ochoa-Fernández and Adil Fahmi, *Biomass-to-Liquids by the Fischer-Tropsch Process* In: *Catalytic Process Development for Renewable Materials*, P. Imhof and J.C. van der Waal (Eds.), Wiley, 2013.

The compositional gap

Compound	Typical entrained –flow raw syngas composition	FT make-up gas specification	
H ₂	19 mol%	61 mol%	Add
СО	58 mol%	32 mol%	hydrogen
CO2	20 mol%		Remove CO ₂
CH ₄	0 mol%	< 10 mol% total inerts	Once through
N ₂	4 mol%		Once-through
NO _x	0 ppm	10 ppb	
NH ₃	20 ppm	1 ppm	
HCN	0 ppm	10 ppb	 Purification
H ₂ S	170 ppm	< 10 ppb	
COS	20 ppm	sulfur	

From: Erling Rytter, Esther Ochoa-Fernández and Adil Fahmi, *Biomass-to-Liquids by the Fischer-Tropsch Process* In: *Catalytic Process Development for Renewable Materials*, P. Imhof and J.C. van der Waal (Eds.), Wiley, 2013.

Enhanced energy efficiency in fuel synthesis from biomass

Enhanced energy efficiency in fuel synthesis from biomass Conceptual water management

Are efficiencies acceptable ?

	Arlanda 1 (Arlanda 2)	NREL 1	NREL 2	Statoil 1	Statoil 2	Statoil 3			
Process conditions									
Feed LHV (MW _{th})	MW _{th}) 611(298) 417* 417* 790 559 493								
Biomass	Grot and logs	Corn stover	Corn stover	Hard wood chips	Hard wood chips	Hard wood chips			
Drying/humidity	50→20 %	25→10 %	25→10 %	35 %	35→15 %	35→7 %			
Pretreatment**	-	-	-	-	Torrefaction	Pyrolysis			
Gasifier feed**	30-50 mm	6 mm	1 mm	3-5 cm	0.1 mm	Liquid			
Gasifier type	Bubbling fluidized-bed	Bubbling fluidized-bed	Entrained- flow	Circulating fluidized-bed	Entrained- flow	Entrained- flow			
Gasifier design	Carbona	GTI	Техасо	Foster Wheeler/ VTT	Siemens	Siemens			
Pressure/	10-20 bar	28 bar	28 bar	10 bar	35 bar	35 bar			
temperature	850-950 °C	870 °C	1300 °C	865 °C	1500 °C	1500 °C			
Syngas conditioning*** CO ₂ removal	Tar reformer Rectisol	Tar reformer MDEA	MDEA	Tar reformer Water wash	Water wash	Water wash			
FT-technology	Slurry Co-catalyst	Reactor n.a. Co-catalyst	Reactor n.a. Co-catalyst	Slurry Co-catalyst	Slurry Co-catalyst	Slurry Co-catalyst			
		25 bar	25 bar	20 bar	20 bar	20 bar			
FT-conditions****	n.a.	200 °C	200 °C	226 °C	226 °C	226 °C			
		40 % conv.	40 % conv.	60 % conv.	60 % conv.	60 % conv.			
Efficiencies									
Efficiency reported	44 (46)	43	53	26	29	37			
Efficiency calculated*	45 (46)	43	54	27	27	33			
Carbon eff. reported	n.a.	39	50	-	-	42			
Carbon eff. calc.*	46 (47)	39	50	24	33	38			

From: Erling Rytter, Esther Ochoa-Fernández and Adil Fahmi, *Biomass-to-Liquids by the Fischer-Tropsch Process* In: *Catalytic Process Development for Renewable Materials*, P. Imhof and J.C. van der Waal (Eds.), Wiley, 2013.

Recommendations

- Select cobalt catalyst
- Select slurry reactor

but most importantly:

- Select gasification technology compatible with FTS
- Develop an integrated and optimized process design
 - Basic flow-sheet
 - Energy efficiency
 - Carbon efficiency
 - Water management
- Consider hydrogen added from other energy sources
 - Water electrolysis most realistic in short term