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Thermo-chemical Conversion Pathways
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> Torrefaction of biomass for energy densification
and improved storage

— Pre-treatment step in pyrolysis and gasification
— Temperature range 200-300°C
— Constructing small scale test rig

— Can also operate at carbonization temperatures




Carbonisation

> Conversion mode that produces highest yields of
biochar

> Processes increases energy density of biomass

> Improves storage and handling properties of solid
products

> Applications for carbonisation include:
— Production of slurry fuels
— Biochar for soil enhancement
— Extraction of complex chemicals
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> Designed for use on:
— Bagasse, Bio-solids, Seaweed, Wood

> Target specific product species C L




Biomass Pyrolysis

> 6 year programme (2009 — 2015)

> Pyrolysis of biomass for production of bio-
bitumens
— Design and testing using bench scale pyrolyser
— Up-scaling to proof of concept scale

— Road testing

» Fluidized bed fast pyrolysis rig - convert
sawdust into solid and liquid products
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Solid Fuel Combustion

> Fuel Performance Evaluation
> Emissions Testing

> On-Site Boiler Optimisation
> Plant Design




CRL Energy Hydrogen and Coal
Gasification Research Programme

> The CRL Energy Research Programme

— Stage 1: Understanding gasification of NZ coals (1996-
2002)

— Stage 2: Design, Construction and Commissioning a
Coal to Hydrogen Technology Package (2002-2008)

— Stage 3: Introducing Biomass and electrolysis into the
Mix (2008-2012)

> Hydrogen in NZ's Energy Future
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> NZ traditionally-Uses renewables

2009 70% electricity and 35% primary energy
> By 2020 energy landscape must transform

Low carbon and sustainable energy sources

» Hydrogen store excess renewable off peak

electricity

> Transport sector undergo transformation




The Current Energy System
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An Energy System With Hydrogen
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Alignment of CRL Energy’s Research

'2Y 228 =2

nIFI\NIF 7\
F1oylralbliliico

Energy Sector

. Service Energy Transformer
Services  mmmp Technologies 5% Carrier Technologies mm) SOUIcCes

Hydraulic
Generator

A Wind Turbine

Electrolyser
or Photovoltaics

Fuel Cell

K Reformation Natural Gas




Recoverable Energy Reserves

Assuming 350 PJ needed:
> Renewables 120 PJ pa
> Oil and condensate — 402 PJ

» Natural Gas - 2300 PJ

— Future discoveries estimated at 80 PJ pa

» Coal — 150,000 PJ

— Sufficient to meet energy demands for 100s of years
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New Zealand Coal Resources

> NZ has 10 times more coal per
capita than theaverage for the
rest of the world

> 9 billion tonne reserve

» 95 million tonne production p.a.

> 5% lignite, 15% sub-bituminous,
10% bituminous

® Waikato

® Taranaki
® West Coast
® Otago

® Southland




Feasibility of Biomass
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Hydrogen and Clean Energy Technology
Package

Four year programme

10 milestones
8 relate to gasifier and modifications
2 relate to improving syngas clean up

Bench scale Modelling char  Proof of Concept
gasifier tests on reactivity and O, blown
coal/biomass product coal/biomass
blends streams gasifier +
electrolyser
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> Biomass gasification is a carbon neutral process

— But a limited resource

» Coal gasification is not a carbon neutral process

— But is a huge natural resource
e Energy security
e Inexpensive

e Regular quality




Why Coal:Biomass Gasification ?

> Enables a transition between fossil and plantation
biomass technologies

> Use a product that may otherwise be disposed of
as waste - e.g. timber milling plant waste, corn
husks, municipal waste, chicken waste
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> U of C Contract:'What happens to gasification
behaviour when coal is added to biomass?

— Using an abundant fuel to augment a lower CV,
less abundant one

> CRL Energy Contract: What happens to
gasification behaviour when biomass is added to
coal?

— Using a carbon neutral fuel to reduce carbon
footprint cht




Testing hydrogen separation membrane technologies
Bench scale coal biomass char reactivities

Effect of Ca on reactivities

Modelling

2009 2010 2011 2012

Air 30%0,

50 kw gasifier 50 kw gasifier
lignite, sub-bit lignite, sub-bit

woodyv biomass woodv biomass
+/' 30% 02 100% 02
from small from big
electrolyser | electrolyser

New 100%0O, or air
200 kw gasifier designed and built
Running on lignite, sub-bit
woody biomass

50 kw gasifier
lignite




Questions around Co-gasification

Feedstock quality landscape
VS
product quality Geographic implications

Carbon balance biodiversity

incentives

NE G :
constraints

Economic implications supply chain

margins sustainability Optimum % of
various blends




Coal:Biomass Co-gasification: Issues

compressibility density Variable reaction rates

Dissimilar fuels

. expansion
moisture %

strength

plant feed requirements
transportation

Variable syngas

composition feed preparation

storage c ﬂ I-




Biomass Selection

% > E.nitens
— Short rotation forestry
— Efficient use of land

— Difficult to prepare

> P. radiata
— Longer rotation
— Avallable
— Easy to prepare
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Making Coal:Biomass Pellets

> Enables regular feedstock quality

— Reproducible results

> Small size

— Easy for handling

— Easy to transport and store
> Fluidise well

— Avoids segregation

— Steady gaseous out stream
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> Make up coal:biomass blends (0, 20%, 40%,
50%, 60%,;80% 100%) by weight.

> Fuels used: E. nitens, P radiata, Lignite, Sub-

bituminous coal

> Test that pellets are strong enough to feed to
gasifier




Making Pellets - Methodology

> Air dry biomass toapproximately 3% moisture
» Grind biomass and lignite/sub-bituminous < 1.0 mm

» Biomass and lignite/sub-bituminous ball milled with
binder (water and 9% wt flour)

> ldeal moisture content level of blends is ~24%

’

> Feed mixture into hot roller press pelletizer (2 passes)

> Pellets 8-10 mm &, 10 — 30 mm long

> Pellets dropped x 10, 2 m onto concrete floor cﬂ







not always go quite to plan
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Bench Scale Gasifier

> Determine reactivities of mixed chars

> Calculate rate at which char is converted to
carbon containing gases

> |dentify time to 50% conversion

> |dentify syngas composition at that time




BENCH SCALE GASIFIER
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Lignite increases reactivity

Lignite / P. radiata

1600
1400 -
@ 1200 - ©, 1200 -
) (0]
£ 1000 G #850C E 1000 -
2 goo® m 900C g 800 —---- oo
3 A950C 3! .
A 600 [------ o o 600 -
* = - ¢ . 2 S . .
3 4002 ******* A o o 3 400 m m M % m
A A A

0% 20%

40% 60%

Coal content [%]

Sub-bituminous / P. radiata

80% 100% 0% 20%

Lignite / E. nitens

Sub-bituminous / E. nitens

40% 60%

Coal content [%]

80%

100%

50%C-consume [s]

600

50%C-consume [s]

200

0

20%

40% 60%

Coal content [%]

80% 100% 0% 20%

Sub-bituminous decreases reactivity

40% 60%

Coal content [%]

80%




Effect of Gasification Temperature on
Reactivity
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Calcium Effect

Lignite char reactivity is
strongly dependent-on
presence of ionically

bound calcium

NZ Lignite

German Brown
Coal

Australian

T5o(min) H,/CO

IBrown Coal

Lignite

Acid
Washed

Calcium
Reloaded




Effect of Calc
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Modelling Char X
Reactivity - ~ .

I
——— (HH0 + CO _ 1,0
LY L 500, Hs

COs

Model based on:

(2) C+H0 = H2+CO

> Gasification reaction kinetics (3)CHC0, 5 2C0
> Transportation of gas molecules in char matrix

> Mass balance equations in solid char
Model considers:
> Gasification agent (steam) diffusion into particle through pores

> Chemical reactions among gases (steam, product gases)

Chemical reactions between gases and char matrix L
ch

Product gas transfer through char




Effect of temperature on pure biomass

> E. nitens char reactivity lies

e B between lignite and sub-

bituminous coal

> Overall reaction rate | with 1
In coal:biomass ratio

e > Structural properties affect
reaction rate
> Internal surface area of

lignite char larger (more
porous) than E. nitens

Differences Between Coal & Biomass cﬂl'
Char Conversion




The CRL

Energy Gasifier




Gasifier Detalil

Bed: depth of 300-mm
Air flow in: 60 m3/h
Gas flow gasifier exit: 130m3/h

Coal size: 3 — 10 mm

Coal feed: 18 kg/h

Steam feed: 5 kg/h
Temperature: 950 — 980 °C
Control system: Delta V



The Fluidised Bed Gasifier

Operation

— Time to steady gasification ~ 2 h
— Reliable optimal operation conditions
— Advanced control system
— Regular quality syngas
15% H,, 15% CO,, 12% CO, <1% CH, plus N..
— 2000 h + operation

— Continuous (1 week) operation
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Particulate Removal

2 stage particulate removal system
— High efficiency cyclone (95%)

— Venturi scrubber (5%)

Low yields of tars and condensables recovered




Syngas Clean-up Line
Sulfur Gases

> Amine scrubber (MDEA)

> Proprietary scavenger

» Packed column, counter flow
caustic wash
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Effect of Biomass Addition on Gasifier Control
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Fuel

100% lignite

80% lignite — 20% P.
radiata

80% lignite — 20% E.
nitens

100% sub-bituminous
coal

80% sub-bituminous
coal — 20% P. radiata

80% sub-bituminous
coal — 20% E. nitens




>C +H,0=CO +H,

> CO, +C=2CO (boudouard)

» CO+3H,=CH, +H,0O (methanation)

» CO+H,0=CO, + H, (WGS)

» CH, + H,O=CO +3H, (steam reforming)




Syngas Clean-up Line
Water Gas Shift Reactor

> CO +H,0 - H, #CO, ~40 kJ/kg-mol

> Single high temperature catalyst bed (340 to
360°C)

> Iron Oxide Catalyst
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Fuel Cell

> Alkaline fuel cell (2.5 kW) assembled
> Developed by.IRL, NZ
> 2 bar H, buffer storage system feed

> Qverall electrical conversion efficiencies 50% HHV

Fuel (H,) is fed into the anode
Oxidant (O, air) is fed into cathode
React in presence of KOH

H, -> 2H+ + 2e-

2H+ + 2e- + O, -> H,0O




O, Blown Fluidized Bed Gasifier with
Integrated Electrolyser

Develop new technology of oxygen blown co-
fired gasifier with integrated electrolyser for

production of low carbon footprint syngas,

and H from New Zealand’s coal and

INA W WA

biomass resources
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Specifications

50kw unit

Fluidized bed

O, or air blown

Biomass capability (up to 45%)
Modular design

Max working temperature 1000°C
Ambient pressure system

Regular quality syngas (> 20% H,)



ASU 15-20% electrical output
Roaring 40s

Use of green H, and O, with biomass and coal

iInteresting
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If CCS high - minimise CO to CO, shift and
produce as much H, for optimum FT




Benefits and Barriers

> Electrolysis provides a relatively simple means of
producing high purity O, and H, in a ratio of 1:2

» The technology is expensive
> The cost of feedstock (electn(:lty) hlgh
nc
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Product Costs vs Allocation of Electrolysis Cost
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Benefits and Barriers

» Recent advances-in materials technology can
potentially reduce these barriers

» Changing environment of electricity supply +

improvements could alter economics in high value O,

and H, applications




Integrated Electrolyser
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Integrated Electrolyser

> Operates at nominal 50Vdc

> Fully self contained

> Wide operating range

> Fast turn-up and turn-down

> O, and H, at required quality

> Produces 0.4 Nm3hr O, (0.8Nm? H,)
» Very low peripheral power demand

> Efficiency of 70% HHV without any special
electrode surface preparation

» Target module level efficiency of > 80%HHV Gﬂl'




2009 - To Date

> PhD student
» Masters Student

> 2 Journal papers
> 4 Conference papers and presentations
> 3 Workshops

> Developed several international collaborations

cht




> Prove concept - complete gasifier-electrolyser
integration

> Complete test run schedule with 100% O, and

45% biomass
» Develop new test programme
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> 1.2 — 1.75 million tonnes of hydrogen p.a. by
2050 (144 — 210 PJ) to meet predicted land
transport demand

» Primary domestic energy sources
— Coal
— Natural Gas
— Renewables




Gasification — The Key Enabling
Technology

> New Zealand lignites very well suited to new
advanced efficient gasification process

> Generation of 1.2 to 1.7 million tonnes of
hydrogen requires gasification of 10 to 15 million
tonnes of lignite.
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