

# Techno-economic and Market Analysis of Pathways from Syngas to Fuels and Chemicals



Michael Talmadge, Abhijit Dutta & Richard Bain

IEA Bioenergy, Task 33 / IEA IETS Workshop on System and Integration Aspects of Biomass-based Gasification – Gothenburg, Sweden

November 20, 2013

#### **Objective**

Assess the economics of producing fuels and chemicals from biomass-derived synthesis gas.

- Process economics based on literature (consistent TEA assumptions)
- Perform more rigorous TEA on promising pathways
  - Biochemical conversion of syngas to ethanol and higher alcohols
  - o Ethanol and higher alcohols to infrastructure-compatible hydrocarbons
- Simple product market analyses

#### What can we do with syngas?

#### **Analysis Approach**

- Simplified TEA model
- Inputs from literature sources
  - Feedstock rate and properties (heating value)
  - Product yields
  - Operating costs (variable & fixed)
  - Capital costs
- Common scaling assumptions
  - Capital scaling exponents
  - Economies of scale for fixed operating costs
- Operating and financing assumptions for n<sup>th</sup> plant and pioneer plant
- Minimum Product Selling Price

literature values → average, standard deviation & 90% confidence intervals

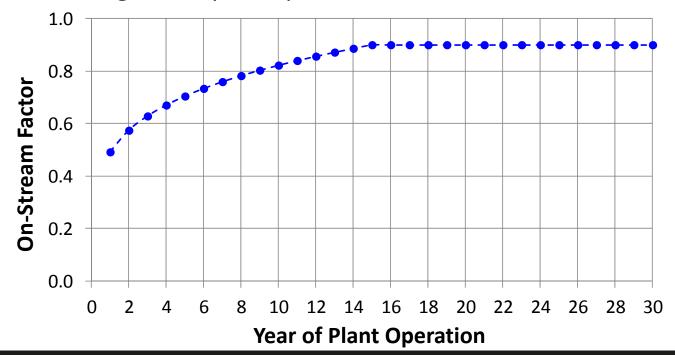
# n<sup>th</sup> Plant Assumptions

| Parameter                                                | Value                                                               |
|----------------------------------------------------------|---------------------------------------------------------------------|
| Basis year for analysis                                  | 2011                                                                |
| Feedstock processing capacity                            | 2,000 Dry Tonnes / SD                                               |
| Feedstock cost (woody biomass)                           | \$75 / Dry Ton (€21.60 / MWh)                                       |
| Debt / equity for plant financing                        | 60% / 40%                                                           |
| Internal rate of return (after-tax) for equity financing | 10%                                                                 |
| Annual interest rate and term for debt financing         | 8% / 10 years                                                       |
| Total income tax rate                                    | 35%                                                                 |
| Plant life                                               | 30 years                                                            |
| Plant depreciation schedule                              | 7-year IRS MACRS  MACRS = Modified Accelerated Cost Recovery System |
| Reliability of operations / on-stream factor             | 0.90                                                                |
| Site development costs                                   | 4% of ISBL Installed Capital                                        |
| Working capital                                          | 5% of Fixed Capital Investment                                      |
| Indirect costs for capital project                       | 60% of Total Direct Costs                                           |
| Capital equipment capacity scaling exponent              | 0.70                                                                |

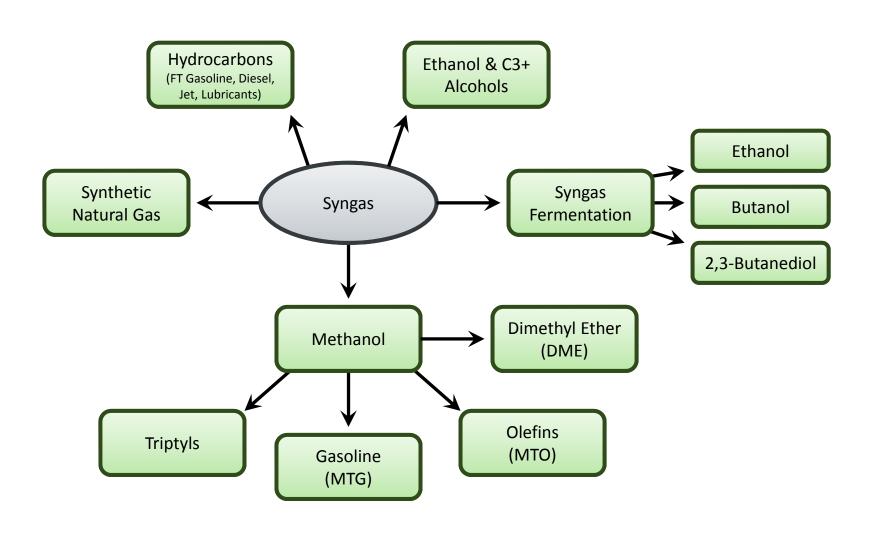
# n<sup>th</sup> Plant Assumptions

| Parameter                                                | Value                                                               |
|----------------------------------------------------------|---------------------------------------------------------------------|
| Basis year for analysis                                  | 2011                                                                |
| Feedstock processing capacity                            | 2,000 Dry Tonnes / Day                                              |
| Feedstock cost (woody biomass)                           | \$75 / Dry Ton (€21.60 / MWh)                                       |
| Debt / equity for plant financing                        | 60% / 40%                                                           |
| Internal rate of return (after-tax) for equity financing | 10%                                                                 |
| Annual interest rate and term for debt financing         | 8% / 10 years                                                       |
| Total income tax rate                                    | 35%                                                                 |
| Plant life                                               | 30 years                                                            |
| Plant depreciation schedule                              | 7-year IRS MACRS  MACRS = Modified Accelerated Cost Recovery System |
| Reliability of operations / on-stream factor             | 0.90                                                                |
| Site development costs                                   | 4% of ISBL Installed Capital                                        |
| Working capital                                          | 5% of Fixed Capital Investment                                      |
| Indirect costs for capital project                       | 60% of Total Direct Costs                                           |
| Capital equipment capacity scaling exponent              | 0.70                                                                |

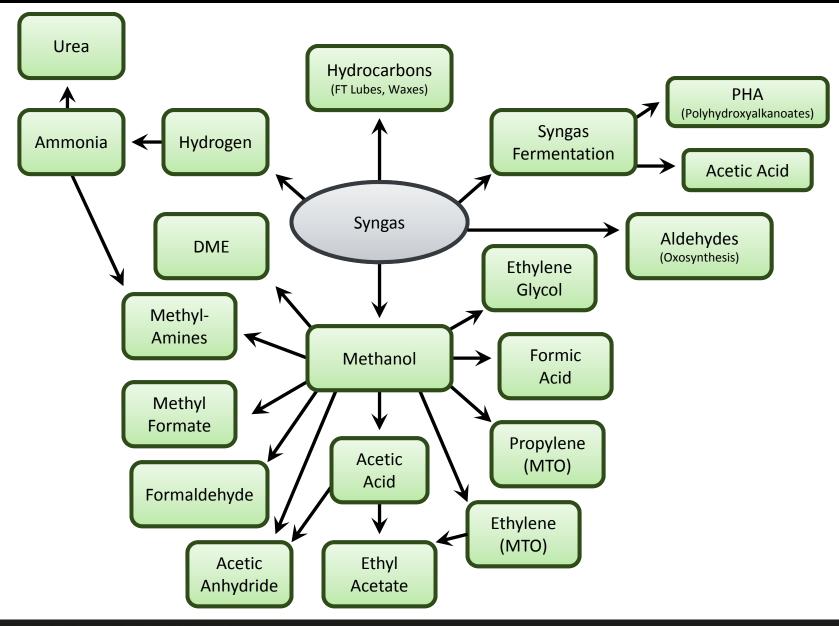
#### **Pioneer Plant Assumptions**


- Internal Rate of Return (IRR): 10% 25%
- Capital Costs:

Pioneer Plant Escalation ~ 210% of nth Plant Estimates (Merrow et al, Rand, 1981)


• Reliability of Operations / On-Stream Factor:

Initial value of 0.5 (Merrow et al, Rand, 1981)


Increasing to 0.9 per experience curve (Heinen, SRI Consulting, 2001)



## **Fuel Pathways Explored**

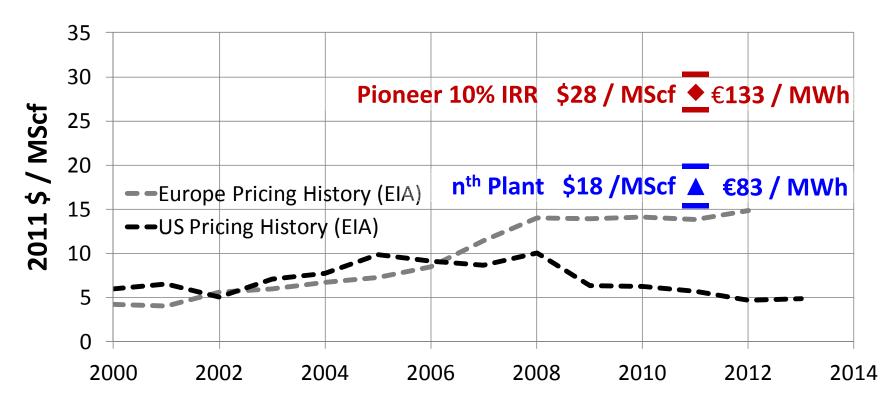


# **Chemical Pathways Explored**



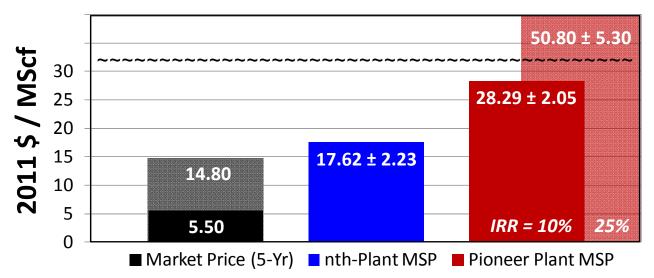
#### **Major Pathway Categories Explored**

- Synthetic Natural Gas via Methanation of Syngas
- Ethanol
  - Catalytic Mixed Alcohol Synthesis
  - Syngas Fermentation \*
- Hydrocarbons
  - Fischer-Tropsch
  - Methanol to Naphtha Hydrocarbons
  - Ethanol & Higher Alcohols to Hydrocarbons \*
- **Hydrogen** via Steam Reforming, WGS & Purification
- Methanol via Catalytic Methanol Synthesis


<sup>\*</sup> Pathways explored by NREL through Aspen modeling and rigorous TEA.

# Synthetic Natural Gas

Methanation of Syngas


## **Synthetic Natural Gas**

| Process                               | Sources                                             | Min. Selling Price Range (\$ / MScf) |               |  |
|---------------------------------------|-----------------------------------------------------|--------------------------------------|---------------|--|
| Syngas to SNG via                     | McKeough & Kurkela, 2007<br>Mozaffarian et al, 2004 | n <sup>th</sup> Plant                | 16.52 – 19.13 |  |
| methanation van der Drift et al, 2005 | Pioneer 10% IRR                                     | 27.07 – 29.52                        |               |  |
|                                       |                                                     | Pioneer 25% IRR                      | 47.50 - 53.97 |  |

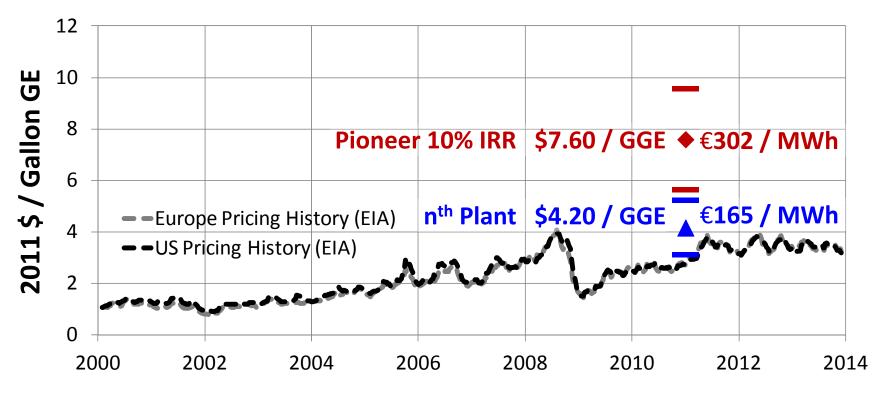


### **Synthetic Natural Gas**

#### Techno-economic Analysis

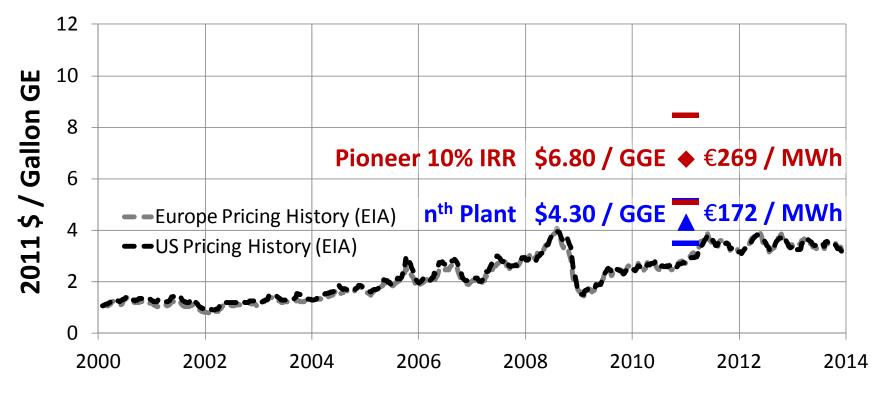


| Market Analysis                       |              | U.S.   | Europe |
|---------------------------------------|--------------|--------|--------|
| Average Product Yield                 | Scf / Ton    | 11,440 | 11,440 |
| Consumption (EIA, 2012)               | Scf / Year   | 25.5T  | 19.0T  |
| 10% of Natural Gas Market             | Scf / Year   | 2.55T  | 1.90T  |
| <b>Equivalent Biomass Consumption</b> | MMTon / Year | 223    | 165    |
| Equivalent Biorefineries (2,000 To    | nne / Day)   | 310    | 230    |


# **Ethanol**

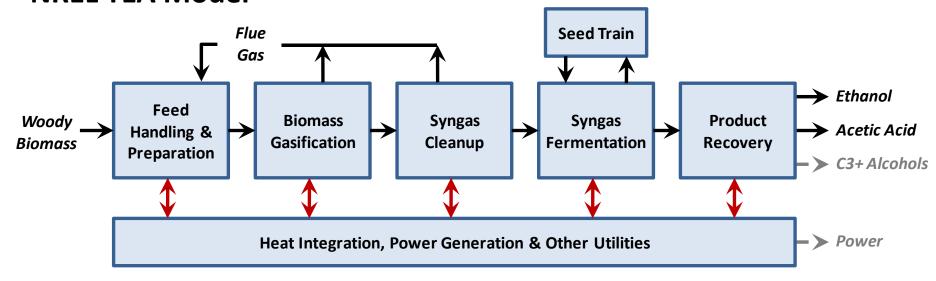
- Catalytic Mixed Alcohol Synthesis
- Syngas Fermentation \*

 $m{*}$  Pathways explored by NREL through Aspen modeling and rigorous TEA.


#### **Ethanol via Mixed Alcohol Synthesis**

| Process                                                                                                                            | Sources                                     | Min. Selling Price Range (\$ / Gal GE) |             |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|-------------|--|
| Syngas to ethanol                                                                                                                  | Dutta et al, 2011<br>Dutta & Phillips, 2009 | n <sup>th</sup> Plant                  | 2.87 – 4.83 |  |
| via catalytic mixed  alcohol synthesis  Dutta & Philips, 2009  Dutta et al, 2010  He & Zhang, 2011  Villanueva Perales et al, 2011 | Pioneer 10% IRR                             | 5.34 - 9.08                            |             |  |
|                                                                                                                                    | Pioneer 25% IRR                             | 10.66 - 18.15                          |             |  |



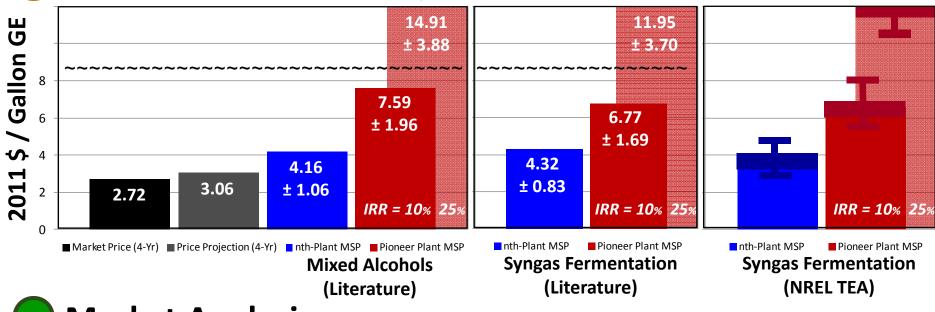

# **Ethanol via Syngas Fermentation**

| Process                            | Sources                                      | Min. Selling Price Range (\$ / Gal GE |              |  |
|------------------------------------|----------------------------------------------|---------------------------------------|--------------|--|
| Ethanol via syngas                 | Putsche,1999<br>van Kasteren & Verbene, 2005 | n <sup>th</sup> Plant                 | 3.67 – 5.08  |  |
| fermentation Piccolo & Bezzo, 2007 | Pioneer 10% IRR                              | 5.77 – 8.50                           |              |  |
|                                    |                                              | Pioneer 25% IRR                       | 8.92 - 16.12 |  |



#### **Ethanol via Syngas Fermentation**

#### **NREL TEA Model**




- Design Report NREL/TP-5100-51400 utilized as basis through clean compressed syngas from biomass.
- Yield structures based on publications from LanzaTech & INEOS Bio.
- Capital costs for fermenters, seed train and cell recovery developed by Harris Group Inc.

#### **Ethanol**



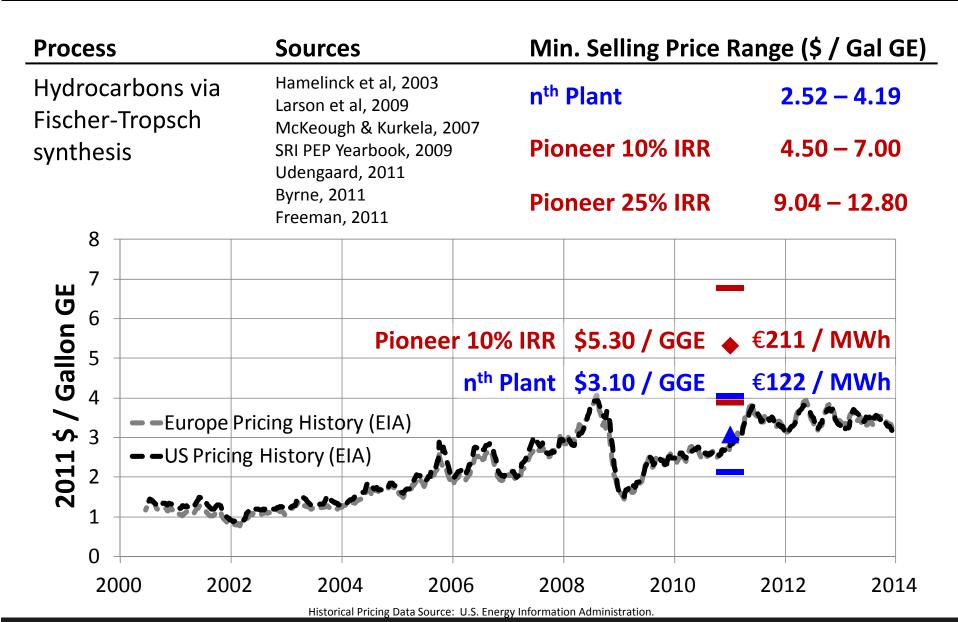
#### **Techno-economic Analysis**





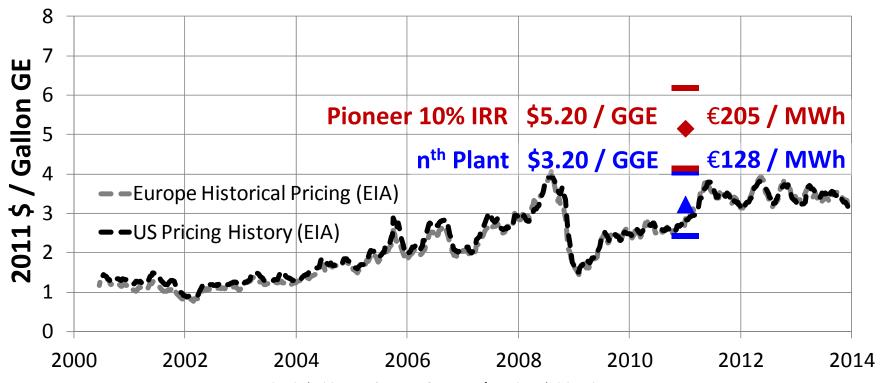
| Equivalent Biorefineries (2,000 Tor   | 100            | 80    |       |
|---------------------------------------|----------------|-------|-------|
| <b>Equivalent Biomass Consumption</b> | MMTon / Year   | 76    | 60    |
| <b>50%</b> of Fuel Ethanol Market     | Gallons / Year | 6.5B  | 5.0T  |
| Consumption (EIA, 2013)               | Gallons / Year | 13.0B | 10.0T |
| Average Product Yield                 | Gallons / Ton  | 85    | 85    |
|                                       |                |       |       |

**Europe** 


U.S.

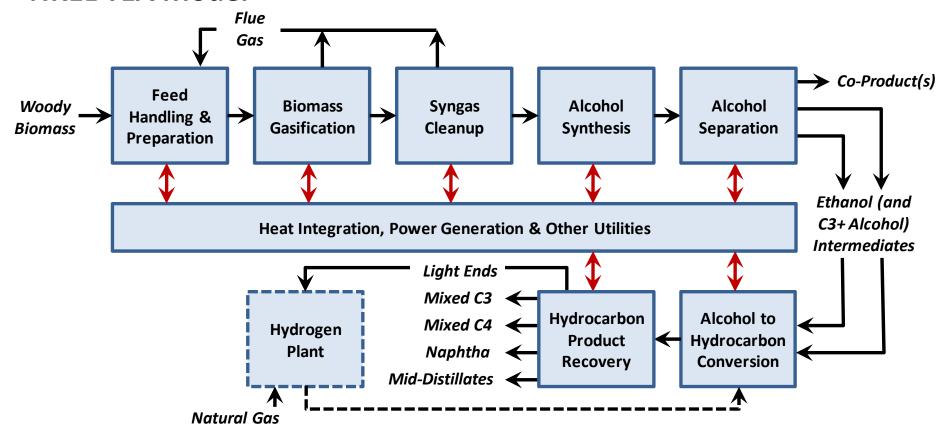
# Hydrocarbons

- Fischer-Tropsch
- Methanol to Naphtha Hydrocarbons
- Ethanol & Higher Alcohols to Hydrocarbons \*


<sup>\*</sup> Pathways explored by NREL through Aspen modeling and rigorous TEA.

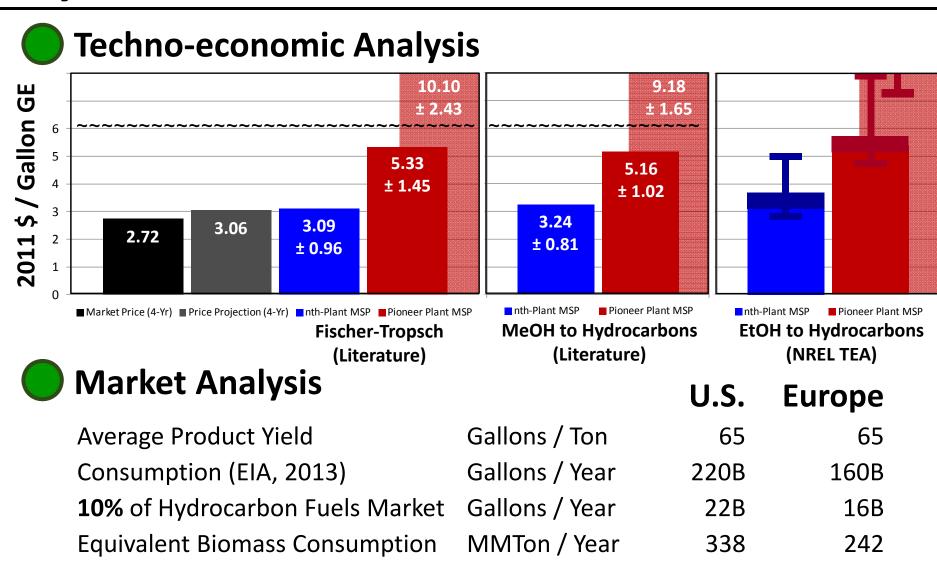
### Fischer-Tropsch Hydrocarbons




#### Methanol to Hydrocarbons

| Process                                                                      | Sources                               | Min. Selling Price Range (\$ / Gal GE) |              |  |
|------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|--------------|--|
| Hydrocarbons via                                                             | Phillips et al, 2011<br>Hindman, 2010 | n <sup>th</sup> Plant                  | 2.61 – 3.84  |  |
| methanol synthesis  SRI PEP Report 191A, 1999  and methanol  Udengaard, 2011 | Pioneer 10% IRR                       | 4.42 – 6.12                            |              |  |
| conversion                                                                   | Jones & Zhu, 2009<br>Ahn et al, 2009  | Pioneer 25% IRR                        | 8.22 - 10.79 |  |




#### **Ethanol & Higher Alcohols to Hydrocarbons**

#### **NREL TEA Model**



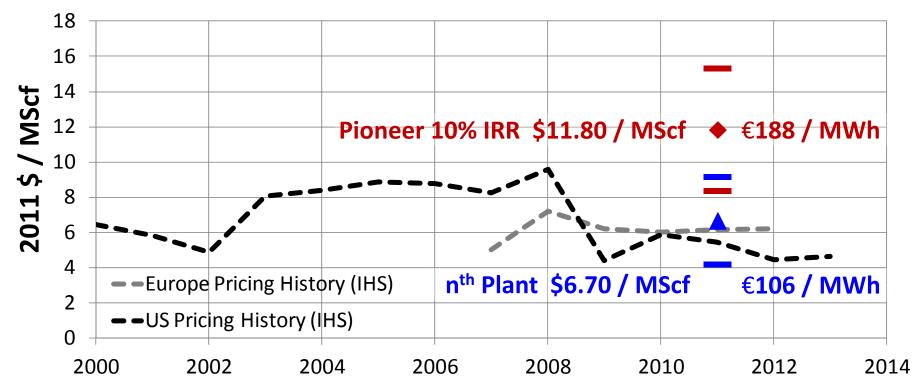
- Ethanol (and higher alcohol) intermediates for hydrocarbon fuel production.
- Eliminates constraints of renewable ethanol blend limits.
- Technology development taking place in academia, national labs and industry.

#### **Hydrocarbon Fuels**



**Equivalent Biorefineries (2,000 Tonne / Day)** 

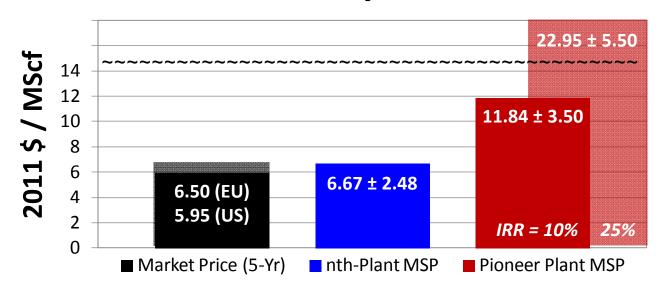
310


440

# Hydrogen

• Steam reforming, water-gas shift & purification

## Hydrogen


| Process                      | Sources                                       | Min. Selling Price Range (\$ / MScf) |               |  |
|------------------------------|-----------------------------------------------|--------------------------------------|---------------|--|
| Syngas to H <sub>2</sub> via | Spath et al, 2005<br>McKeough & Kurkela, 2003 | n <sup>th</sup> Plant                | 5.33 - 8.84   |  |
| steam reforming,             | Williams et al, 1995                          | Pioneer 10% IRR                      | 9.87 – 14.82  |  |
| water-gas shift &            | Hamelinck & Faaij, 2001                       |                                      |               |  |
| purification                 |                                               | Pioneer 25% IRR                      | 19.80 – 27.60 |  |

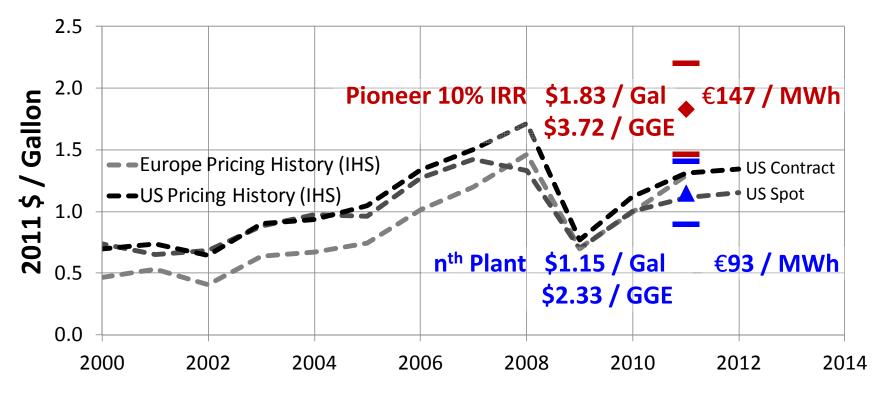


Historical Pricing Data Source: SRI / IHS CEH Marketing Research Reports. Projected values based on ratios to EIA natural gas projections.

## Hydrogen

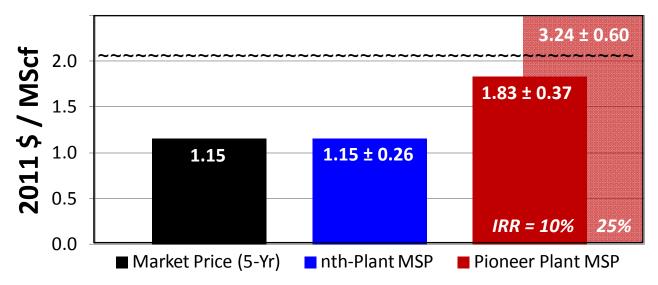
#### **Techno-economic Analysis**




| Market Analysis                       |              | U.S.   | Europe |
|---------------------------------------|--------------|--------|--------|
| Average Product Yield                 | SCF / Ton    | 37,500 | 37,500 |
| Consumption (EIA, 2013)               | SCF / Year   | 4.1T   | 3.2T   |
| 10% of HydrogenMarket                 | SCF / Year   | 0.41T  | 0.32T  |
| <b>Equivalent Biomass Consumption</b> | MMTon / Year | 11     | 8.5    |
| Equivalent Biorefineries (2,000 To    | nne / Day)   | 14     | 11     |

# Methanol

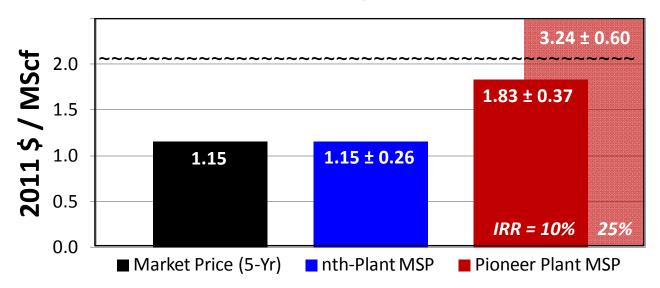
Catalytic Methanol Synthesis


#### **Methanol**

| Process                 | Sources                                            | Min. Selling Price Range (\$ / Gal) |             | Min. Selling Price Range (\$ / |  |
|-------------------------|----------------------------------------------------|-------------------------------------|-------------|--------------------------------|--|
| Syngas to methanol      | Tarud & Phillips, 2011<br>McKeough & Kurkela, 2007 | n <sup>th</sup> Plant               | 0.96 - 1.32 |                                |  |
| via catalytic synthesis | SRI PEP Yearbook, 2009<br>Williams et al, 1995     | Pioneer 10% IRR                     | 1.54 – 2.03 |                                |  |
|                         | Hamelinck & Faaij, 2001                            | Pioneer 25% IRR                     | 2.82 - 3.71 |                                |  |



#### **Methanol as Chemical Intermediate**


## Techno-economic Analysis



| Market Analysis                       |                | U.S.  | Europe |
|---------------------------------------|----------------|-------|--------|
| Average Product Yield                 | Gallons / Ton  | 170   | 170    |
| Consumption (IHS)                     | Gallons / Year | 1.9B  | 2.2B   |
| 10% of Methanol Market                | Gallons / Year | 0.19B | 0.22B  |
| <b>Equivalent Biomass Consumption</b> | MMTon / Year   | 1.1   | 1.3    |
| Equivalent Biorefineries (2,000 To    | nne / Day)     | 1.4   | 1.6    |

#### **Methanol as Fuel Intermediate**

#### **Techno-economic Analysis**



| Market Analysis                              |                | U.S. | Europe |
|----------------------------------------------|----------------|------|--------|
| Average Product Yield                        | Gallons / Ton  | 65   | 65     |
| Consumption (EIA, 2013)                      | Gallons / Year | 220B | 160B   |
| 10% of Hydrocarbon Fuels Market              | Gallons / Year | 22B  | 16B    |
| <b>Equivalent Biomass Consumption</b>        | MMTon / Year   | 338  | 242    |
| Equivalent Biorefineries (2,000 Tonne / Day) |                | 440  | 310    |

#### **Conclusions**

- Hydrocarbon, ethanol and methanol economics can be competitive for n<sup>th</sup>-plant.
- Pioneer plant economics are challenged overall.
- Market capacities do not constrain bio-product pathways in major hydrocarbon fuel markets (natural gas, petroleum fuels).
- With fixed ethanol blend limit, cellulosic pathways and grainderived product will compete for limited market.
- Market capacities for methanol-derived chemicals are constraining.
- Syngas fermentation is potentially competitive, depending on
   CO / H<sub>2</sub> conversion to product(s).
- Methanol and ethanol are attractive intermediates for production of infrastructure-compatible hydrocarbons.

#### **Future Work**

- Apply simplified TEA and market analysis on emerging pathways to identify economic feasibility in early stages of development.
- Explore opportunities to improve Pioneer Plant economics
  - Biomass co-feeding opportunities (NG-Biomass to Liquids)
  - Utilizing inexpensive feedstocks
  - High-value co-products
  - RIN credits
- Evaluate infrastructure hurdle for methanol economy

### Acknowledgements

- Abhijit Dutta and Richard Bain (co-authors)
- Matt Worley and Ben Fierman of Harris Group Inc, Atlanta, Georgia.
- Bioenergy Technology Office (BETO) of the United States Department of Energy
- NREL Biorefinery Analysis and Thermochemical Platform Teams

#### References

For a complete list of references utilized in this analysis, please contact Mike Talmadge (michael.talmadge@nrel.gov / 303-275-4632)