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Vision of the research at Chalmers

Demonstrate how to produce Bio-Methane with a thermal
efficiency of 85% (10-15% units higher than today) from
biomass delivered with a moisture content of 50% on
mass.

MprodLHV prod Delivered from plant

>85%

'r] )
Mwet,biomassLHV wet,biomass Delivered to plant
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Commercialization

GoBiGas Phase 2 Hisingen
/N 80-100 MW Bio-Methane
Commercial Plant
GoBiGas Phase 1 Hisingen Goteborg Energi
/\;O MW Bio-Methane Pilot Plant
Goteborg Energi n 3
Chalmers I T T, e Ty
2-4 MW Raw Gas A - 4
Demonstration Plant ' £

Chalmers lab reactor

380 Million €
160 Million €

1.5 Million €

2008 2013 2017
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Process Scheme Biomass to Bio-Methane in the GobiGas plant
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Indirect Gasifier
Afterburner

Filter

Oil Scrubber

Active carbon guard bed
Compressor
Hydrodesulfurization
Amine scrubber (H2S)
H2S-guard bed

Olefin reformer

Shift reactor

Amine scrubber (CO2)
Three step Methanation
Compressor

Complemented with steam cycle for internal electricity production and drying the present
process would have an efficiency according to the given definition around 70%
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Optimization of the process
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Optimization:
Maximize the amount of methane that is initially formed in the gasification process to
reach the methanation step.

Exergy loss for the system

CH4 + H20 => CO+3H2 AH =212 J/mole CH4 In process at >850 °C
CO+3H2 =>CH4 + H20 Methanation at <600 °C

‘ As much methane as possible in syngas
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Optimization of the process

CO2 removal

Optimization:
Minimize the amount of CO2 in the product gas

Loss for the system
90-130 kJ/mole,,, heat at ~ 140°C

Minimize the amount of oxygen that is added to
generate heat for the gasification process to be
mixed with the product gas
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Optimization of the process
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Optimization: Water Gas Shift

H2 to CO ratio in raw gas between 0.7 and 0.8

(approximately equilibrium at 900 °C for gas originating from the biomass)
H2 to CO ratio for methanation ~ 3

Heat generation CO + H20 =>CO2 + H2 AH__,, -44 kl/mole,

Additional power consumption compression to 6 bar ~ 7.5 kJ (electricity)/mole., (converted)
Minimum steam demand to reach H2 to CO ratio = 3

In gasifier 850 °C  1.93 mole,,,/mole., Heat of evap. 85 ki/mole_,

Shift reactor 400 °C  0.67 mole,,,/mole., Heat of evap. 29 kl/mole.,

» No additional steam should be fed to the gasifier to
promote the shift reaction
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Optimization of the process
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Optimization:
This introduce a second gasification where the product gas is reheated to

convert unwanted hydrocarbons and cooled to the temperature of the water

gas shift. This step could be avoided if the conversion of the hydrocarbons in
the first gasification step was sufficient.

The conversion of all hydrocarbons except methane
should be converted in the gasification step
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Optimization of the process
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In the gasification process the losses of chemical bound energy is related to:
e Heating of Combustion Air

e Heating of Steam

e Heating of Fuel

e Evaporization of Moisture

e Unconverted Char

air, steam and fuel need to be minimized as well as

| The heat demand for drying and heating of combustion
unconverted char
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Challenges to be Addressed by Research

e As much methane as possible in syngas

 Minimize the amount of oxygen that is added to generate heat for
the gasification process to be mixed with the product gas

 No additional steam should be fed to the gasifier to promote the
shift reaction

 The conversion of all hydrocarbons except methane should be
converted in the gasification step

e The heat demand for drying and heating of combustion air, steam
and fuel need to be minimized as well as unconverted char
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Methane in Raw Gas

Primary Product Yields
of Biomass

Methane peaks between
825 and 975 °C

7% mass OF 18 Yogergy OF
the dry biomass is

Methane.

If this is reformed to H,
and CO this would
reduce the conversion
efficiency with up to 4%
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Oxygen Transport in Indirect Gasifiers
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Reforming of Hydrocarbons
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Advanced Circulation of Fines

Cleaned
Raw Gas
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2,60 8,71
2,37
4,81
l =

Raw gas 700°C 750°C 800°C 880°C

Air Gas CIeaning Berguerand et al 2012

Gasifier
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Optimize Fuel Conversion

Video made by Erik Sette/Rustan Marberg 2011

Steam to Fuel Ratio Z Char Conversion
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Preheating and Drying of Fuel
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Heat source < 100 C Heat source 150 - 130 C Heat source 130-120C

Preheating of fuel correspond to
an average temperature of 100 °C
and 0% moisture

Fuel moisture is used as purge gas
for inertisation

Biomass heating section

Alamia et al (submitted for publication)
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Optimized process
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Process Simulation - Aspen
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GCC curve at Optimized Process

n =80%, 48% of the char is Gasified => Combustion unit 13.5 MW, per 100 MW dry biomass
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Q (kW)
Heat available : around 31 MW, per 100 MW dry biomass (15,4 between 900 C and 500 C)

El consumption in the process : 4,1 Mw,, per 100 MW dry biomass

20 % 25% 30%

Excess Electricity (MW) 2,1 3,65 5,2
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® Go beyond 80 %
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Biomass to SNG efficiency

Gasifier F:l
|
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Xchar gasif. Electricity Produced CH4 Efficency

(%) cycle eff. | input (MW) | from 100 MW dry | Based on
biomass input LHV (%)
(MW)

48 % (max) 14% 0 70.0 80.1

56,5 % 20% 2.1 72.0 82.4

61,5 % 25% 3.6 73.4 84.0

66,5 % 30% 51 74.7 85.5
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Conclusion

e |tis possible to reach above 80% efficiency for a stand
alone Biomass to Bio-Methane production unit

 The main challenges to reach this goal are:

— Reforming of all hydrocarbons except methane to CO and
H, already in the gasification step without introduction of
additional oxygen

— Obtain high conversion of char in gasifier

— High efficient small scale steam cycles



