Quality of ashes from thermal gasification of sewage sludge and biomass

- for use as CPK fertilizers

Tobias Pape Thomsen

Biomass Gasification Group Technical University of Denmark

Structure of presentation

- 1. Gasification at BGG
- 2. Ash quality at BGG why and how?
- 3. Result examples
- 4. General conclusions

Gasification at BGG

TwoStage Down Draft gasification

- Small scale application ($<2 \text{ MW}_{TH}$). Stand alone unit.
- **Eff.:** Cold gas efficiency 93%
- Current R&D focus: Gas synthesis, fuel/electrolysis cell integration and ash
- Fuel: Wood chips, sewage sludge pellets and straw with additives

Low Temperature Circulating Fluidized Bed gasification (LT-CFB/Pyroneer)

- Fully scalable. Stand alone (R&D) or w. boiler (current)
- **Eff.:** Hot gas efficiency up to 95%
- Current R&D focus: Gas cleaning, fuel & product flexibility and ash quality
- Fuel: Straw, sewage sludge, manure fibers, biogas fibers, various organic residues from food industry and fuel mixes

Introduction of the TwoStage gasifier

Introduction of the TwoStage gasifier

Camilla

Thermal capacity: 25-50 kW Location: DTU Risø Campus

Owner: DTU

Viking

Thermal capacity: 75-100 kW Location: DTU Risø Campus

Owner: DTU

Introduction of the LT-CFB gasifier

100 kW LT-CFB

Location: DTU Risø Campus

Owner: DTU

6 MW Pyroneer

Location: Asnæs power plant

Owner: DONG Energy

ASH FERTILIZER QUALITY AT BGG WHY AND HOW?

General motivation – why ash?

- 1) Improve the life cycle impact of thermal gasification:
 - Reduce pollution e.g. toxicity and eutrophication
 - Recover and reuse critical elements
 - Enhance soil quality and sequester carbon
- 2) Improve feasibility of thermal gasification in a circular economy:
 - Develop new markets
 - Valorise ash products

Ash investigations: BGG involvement

- Practical and legal aspects w. farmers & consultants
- Toxicological aspects w. KU, DTU ENV and RUC
- Fertilizer potential and –value w. KU, AU, farmers and consultants
- Soil enhancement properties and –value w. KU, RUC, farmers and consultants
- Influence of fuel characteristics w. DFBT, DONG, KU, AU
- Influence of thermal process design and operation
 w. DFBT, DONG, Dall Energy, KU
- Influence of post-process treatment w. DTU BYG, KU

Ash investigations: How?

- Fuel and ash characterization e.g.
 - Elemental content, solubility and speciation
 - Content of PAH and other organic toxins
 - pH
 - Morphology and structure
- Application and handling test e.g.
 - Pelletization and granulation properties
 - Storage and transportation losses
 - Distribution and field application
- System analysis e.g.
 - Energy- and mass-balances
 - Carbon footprint assessment
 - Full life cycle analysis

Ash investigations: How?

Soil incubation studies

- P & K fertilizer value
- pH of soil/substrate mixtures
- Carbon stability
- Water holding capacity

Plant experiments (pot and field trials)

- P and K uptake
- Plant growth response (P and K)
- Leaching
- Soil structural changes, SOC, respiration and eco-toxicology
- Liming effect

Ash investigations: How?

ASH FERTILIZER QUALITY AT BGG RESULT EXAMPLES

Result example: Tech. influence on ash quality

Result example: Tech. influence on ash Cd load

Tobias Pape Thomsen, Zsuzsa Sárossy, Jesper Ahrenfeldt, Ulrik Henriksen, Flemming Frandsen and Dorette Sophie Müller-Stöver: Changes imposed by pyrolysis, thermal gasification or incineration on elemental composition and phosphorus fertilizer quality of municipal sewage sludge. Accepted for publication in: Journal of Environmental Management

26

Result example: Tech. influence P fertilizer value

Tobias Pape Thomsen, Zsuzsa Sárossy, Jesper Ahrenfeldt, Ulrik Henriksen, Flemming Frandsen and Dorette Sophie Müller-Stöver: *Changes imposed by pyrolysis, thermal gasification or incineration on elemental composition and phosphorus fertilizer quality of municipal sewage sludge*. Accepted for publication in: Journal of Environmental Management

Result example: Fuel influence P fertilizer value

Tobias Pape Thomsen, Henrik Hauggaard-Nielsen, Benny Gøbel, Peder Stoholm, Jesper Ahrenfeldt, Ulrik B. Henriksen and Dorette Sophie Müller-Stöver: *Low Temperature Circulating Fluidized Bed gasification and co-gasification of Municipal Sewage Sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer.* In review in: Waste Management

Result example: particle size influence P fert. val.

Thomsen, T. P. (2016) Closing the Loop - Utilization of Secondary Resources by Low Temperature Thermal Gasification, PhD thesis, Technical University of Denmark

Ash quality: A few general conclusions

- Not simple!
- Substantial variation from
 - Fuel
 - Technology
 - Post-process treatment
 - End-use scenario
- General trends
 - Generally low ECO-tox of biomass ashes
 - Highly stabile C content (carbon sequestration)
 - Profound liming effect
 - High loss of N, minor loss of P and K
 - Increase water and nutrient retention
- Immense potential benefits
- Success only through cooperation

Acknowledgements

DTU KT, DTU ENV, DTU MEK, DTU MAN, DTU CEN & DTU BYG

Thank you for your time and attention

KU PLEN & KU IGN

RUC ENSPAC

DFBT

DONG

AU

FRICHS

FORS

BIOFOS

ADELAIDE

WERKSTATTEN

EUDP (Danish Energy Agency)

And many, many more ...

