IEA Bioenergy Task 33 Workshop Alkmaar, The Netherlands 2018-05-08

Waste gasification overview; two-stage incineration and "true" gasification

Lars Waldheim Alsätravägen 130

12736 SKÄRHOLMEN

lars.waldheim @waldheim-consulting.se +46 70 592 81 69

1996 Report

IEA Biomass Agreement

TASK X. BIOMASS UTILIZATION BIOMASS THERMAL GASIFICATION AND GAS TURBINES ACTIVITY

Sub-task 6 - Gasification of Waste

Summary and Conclusions of Twenty-five Years of Development

Erik Rensfelt, TPS Termiska Processer AB Anders Östman, Kemiinformation AB

Study Content

Wastes* as a gasifier fuel

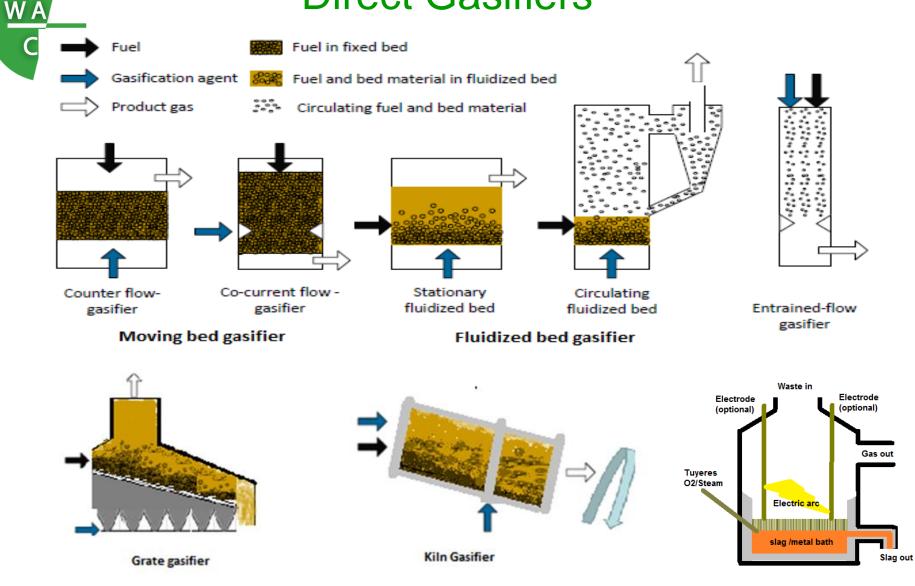
- Waste fuel characteristics and waste fuel standards
- Contaminants and emission precursors
- Waste quantities and disposal
- Regulatory considerations
- Waste gasification and gas cleaning technologies
 - General description
 - Specific technologies in projects
- Considerations for the use of the product gas
 - Fuel gas
 - Power and CHP
 - Fuel and chemical products
- Target market, technical requirements and barriers
- Waste gasification developers, plants and projects

*MSW, IW etc. but not special or hazardous wastes

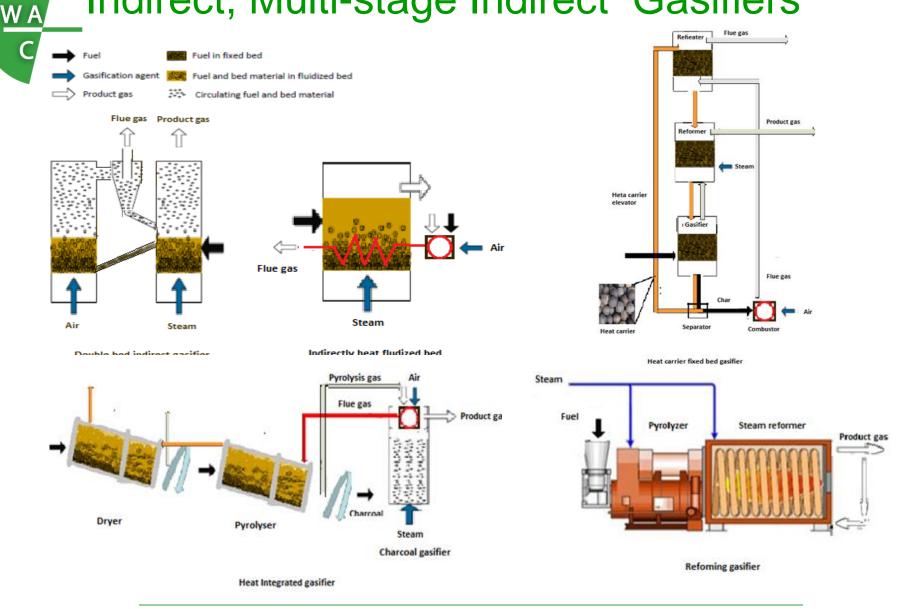
Gasification

Definition

The transformation of a combustible solid or a liquid to a gaseous form


General purposes

- To provide a more flexible use of the original fuel
- To allow separation of combustible components from inorganics/ash
- To allow cleaning from certain contaminants
- To access certain chemical building blocks e.g. hydrogen


Waste-specific purposes

- To accomplish ash vitrification without external energy input
- To accomplish pre-combustion cleaning of smaller gas volume
- To thereby fulfill end-of-waste criteria for downstream uses of gas

Direct Gasifiers

Indirect, Multi-stage Indirect Gasifiers

W	A	

Database, Developers

APP	FB (Outotec)	CHP, syngas	Pilot unit Swindon
Advanced Plasma			Tyseley Urban Resource Centre 1
Processes (UK)			000 tpa SNG demo in constr.
Biomass Energy Systems, Inc. (BESI)	Kiln		S. Korea 4 tph
Biomass Power Ltd.	Step grate		Hoddesdon 10 MWe start-up Aberdare 11 MWe in construction Belfast 15 MWe in construction Hamilton, in planning Washwood, in planning
Brightstar Environmental	Separation by autoclaving Ext. heated pyrolysis Steam gasification of char Solid Waste and Energy Recycling Facility (SWERF)	СНР	Kembla Grange, Wollongong, Australia 50 000 tpa 2001-2004
Chinook Science (USA)	Pyrolysis		West Midlands. 160 000tpa ASR converted to 40 MWe Eastern US 160 000 tpa ASR Also claims to have 16 plants in operation worldwide. Three projects, Westbury, Dagenham and Skelton Grange in planning in the UK.
СНОРЕХ	Fixed bed plasma PRME gasifier Kobelco gasifier	СНР	Morcenx, France 40 MW Three project in planning in France, Thouars, Locminé and Montauban de Bretagne

Over 70 entries

Database, Plants and Projects

Kurobe	Nikko Mikkaichi	Kurobe,	Ebara	1*63 tpd	ASR,		2002
	Recycling Co. Ltd.	Toyama (JP)			waste		
					plastic		
Kushiro		Kushiro City	Mitsubishi	4.6 Mwe	Waste		In Planning
		(JP)					
Kymijärvi I	Lahden	Lahti (FI)	Metso	2*80 MW	SRF	СНР	In op. 2012
	Lampovoima Oy				(wastes)		
Kymijärvi II	Lahden	Lahti (FI)	Foster-Wheeler	70 MW	Wood	Indirect	In op. 1997
	Lampovoima Oy				residues	co-firing	
Kyouku		Kyouku (JP)	Mitsui	2*2 tph			2003
Lebanon WTE	PHG Energy	Lebanon, TN,	PHG Energy	64 stpd,	SRF, tyres,	0.4 MWe	In
Gasification Project		USA			sludge		construction
Levenseat	Levenseat	Forth, Lanark,	Outotec Energy	105 000 tpa	RDF	11 MWe/	2017
	Renewable Energy	(UK)				16 MWh th	
Lida	Minami-Shinshu	Lida, Nagano	Ebara	2*47 tpd	MSW	0.4 MWe	2003
	Union	(JP)					
Lisburn		Lisburn (UK)	Energos	80 000 tpa	Wastes	Power	In planning
Locminé	CHO Power	Locminé (FR)	CHO Power		Sorted MSW	11 MWe	In planning
Mahad		Mahad (IN)	Concord Blue			H2	Ор

Over 250 entries

W A

Thermal Treatment, My Taxonomy Industrial Emissions Directive 2010/75/EC.

"waste incineration plant' means any stationary or mobile technical unit and equipment dedicated to the thermal treatment of waste, with or without recovery of the combustion heat generated, through the incineration by oxidation of waste as well as other thermal treatment processes, such as pyrolysis, gasification or plasma process, if the substances resulting from the treatment are subsequently incinerated;"

'waste co-incineration plant'main purpose is the generation of energy or production of material products and which uses waste as a regular or additional fuel or in which waste is thermally treated for the purpose of disposal.....

End-of-waste condition for waste gasification product gas: gases "are purified to such an extent that..... they can cause emissions no higher than those resulting from the burning of natural gas"

Fuel Gas Cleaning

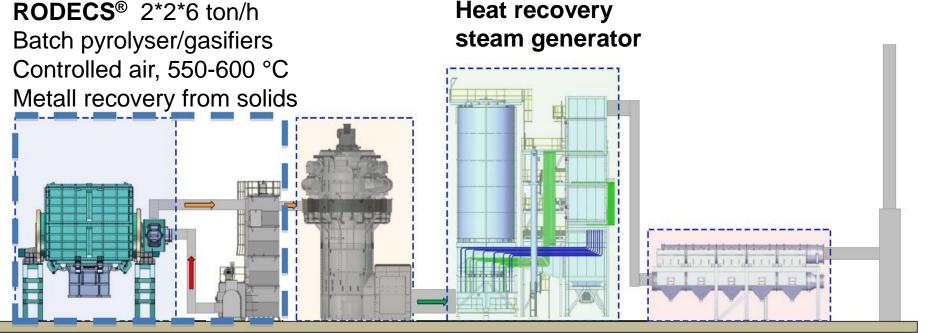
Contaminant/ Reg. emissions	Cleaning methods				
Tars	In Reactor thermal, plasma (molten bath)	Sec. reactor thermal, plasma (catalyst)	Scrubbers Water, FAME Tar liquid OLGA	WESP (after scrubbers)	
Particulates incl. most HM at lower temp.	Cyclones	Filters 300- 400 °C 150- 200 °C	WESP (after scrubbers)	Scrubbers	
HCI, HF	Condensation as NaCl(s), KCl(s)	Lime, sodium (bi)carbonate	Scrubber (alkaline)	Sorbents for traces	
Ammonia, HCN	(Catalysts, sorbents, <i>development</i>)	Scrubbing (acidic, alkaline)	Cat. hydrolysis (HCN)		
Hg	Activated Carbon				

Sulfur Removal Technologies

Project	Gas use	Upstream	Sulfur removal		
Air Products, Teesside, UK	GT-CC	COS Hydrolysis	Liquid ox. (LO-Cat)		
Plasco, Trails Road, CA	ICE		Thiopaq		
Thermoselect, Fondotoce IT	ICE		Lo-Cat		
Thermoselect, Karlsruhe, DE	ICE		Sulferox		
JFE Thermoselect			LO-Cat?		
Chiba, Izumi, Nagasaki,	ICE				
Fukuyama, Osaka. Kurashiki,	IUL				
Isahaya, Tokushima, Yorii, JP			LO-Cat		
Thermoselect, Mallagrotta, IT	ICE		LO-Cat?		
Mitsubishi (Thermoselect). Mutsu	?		Tokyo Gas (Taxahax)		
UBE, JP	Synthesis		LO-Cat		
Enerkem, Alberta Biofuels, CA	Synthesis		(n.a. proprietary)		
SynTech Bioenergy, Wednesbury	ICE	NaHCO ₃	Alk. scrubbing, PAC		
APP, Tyseley, UK	Synthesis	NaHCO ₃	Alkaline scrubbing*		
*hypochlorite oxidation in process water					
IEA Bioenergy Task 33			11		

Thermal Treatment, My Taxonomy

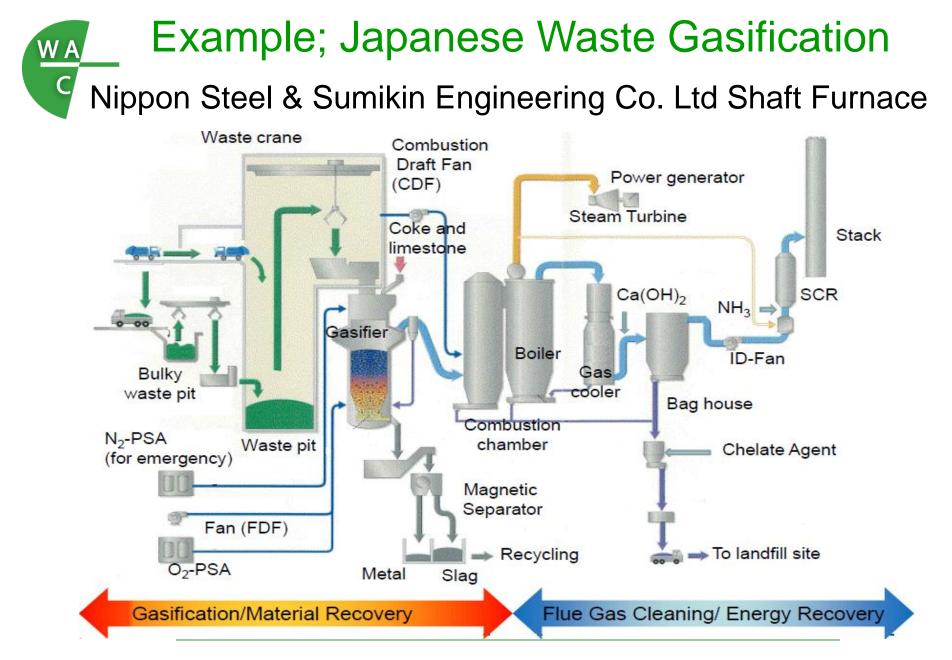
2018-05-08

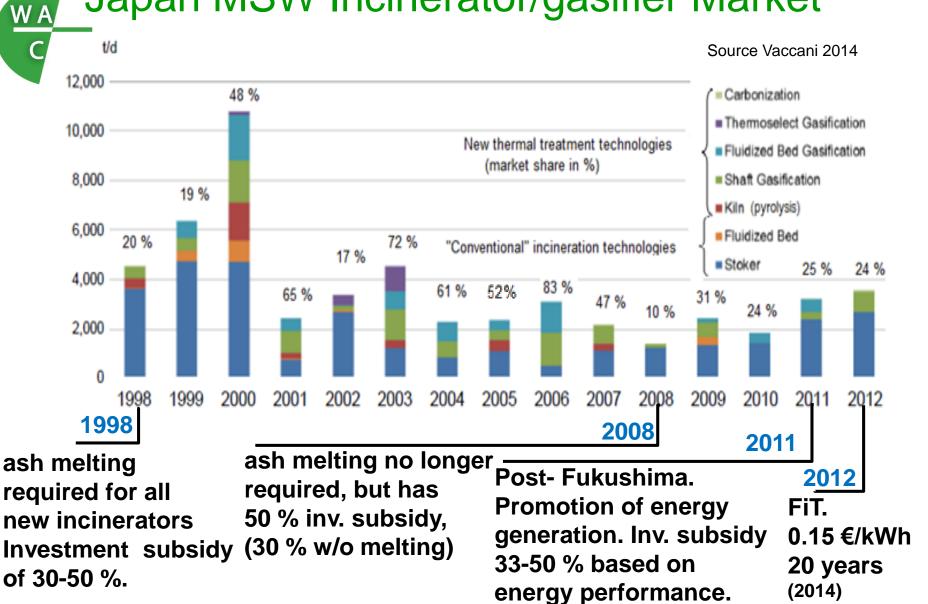

ELV Directive (End-life of Vehicles) 2000/53/EC

ELV Directive : min. 85 % material recovery from vehicles

2015-, < 5 % to disposal, remainder to energy recovery.

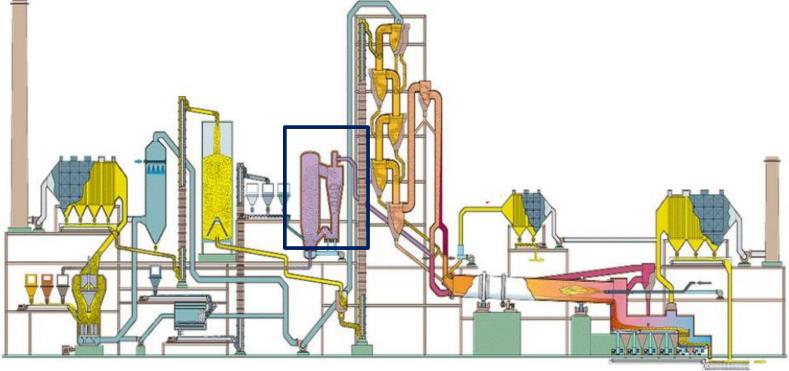
Chinook Science / ERM


350 000 ton treated, < 200 000 tons SRF (shredder residues fines), 40 $\rm MW_e$, West Midlands, UK, in operation. Also considered for RDF


Combustion chamber 850-1 400 °C, (Nat. gas support)

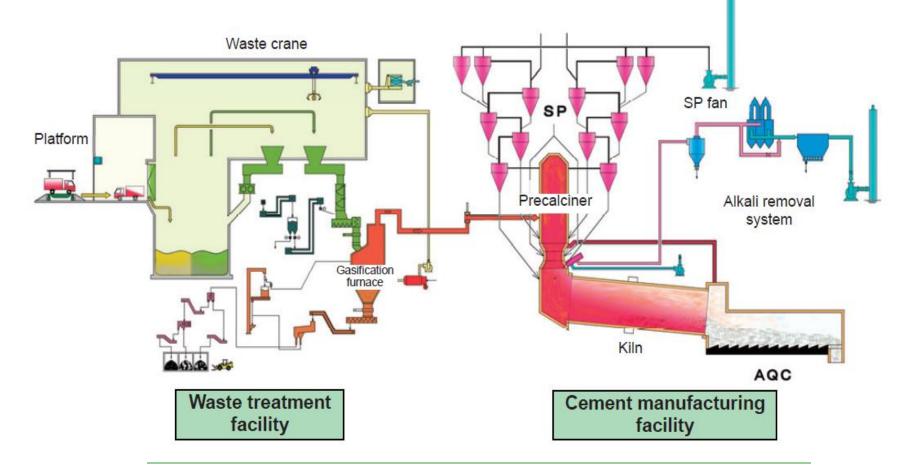
Air pollution control

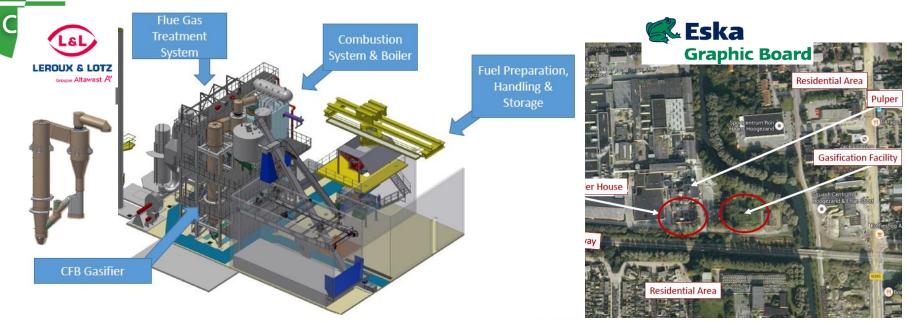
WA


Japan MSW Incinerator/gasifier Market

CEMEX Zementwerk Rüdersdorf

 $\sim 100~\text{MW}_{\text{th}}$ Lurgi CFB gasifier 1996 (20-25 tph coal ash, coal, waste in comb.) Today $\sim \! 70~\%$ of energy from secondary (waste) fuels, 33% biogenic


~ CFB plant revamped in 2011 (Outotec) to increase waste fraction On-going work to enhance metall recovery from gasifier ash


W A

Anhui Conch Kawasaki Engineering Co., Ltd.

> 20 FB gasification plants using waste installed in cement plants in China since 2012 at capacities of 200-400 tpd (approx. 30-80 MW_{th})

W A

ESKA graphic paper, Hoogezand, NL

- Fuel: fiber rejects from ESKA plant, 25 000 ton/y, (approx. 12 MWth)
- Air blown CFB gasifier coupled to a steam boiler @ 16 bar sat
- Thermal efficiency ~ 85%
- Commissioning 2016, performance test 2017

Fuel Preparation (crane, shredder, magnetic + non-magnetic separator)
 Storage & Dosing (c/w reclaim system, conveyors and surge bin), CFB Gasifier,
 LCV Combustion System, Heat Recovery Steam Generator, Fluegas System

Waste Framework Directive 2008/98/EC

R1: Energy recovery

(GWh_e*2.6+GWh_{th}*1.1-GWh_{f+i})

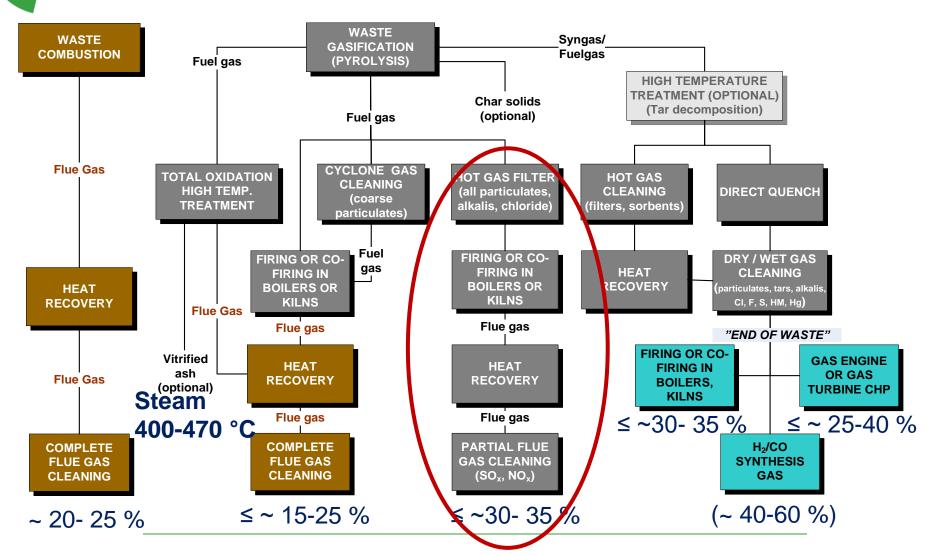
Energy efficiency = -----

> 0.65

Power prod.	Heat prod.	"Energy	
(% energy)	(% energy)	Efficiency"	
26	0	0.65	
0	57	0.65	
15-20	22-10	0,65	
25	60	1.35	
25	65	1.41	
31	56	1.47	
	(% energy) 26 0 15-20 25 25	(% energy)(% energy)26005715-2022-1025602565	

R3: Recycling/reclamation of org. substances which are not used as solvents (incl. composting & other biological transformation processes). Includes gasification & pyrolisis using the components as chemicals. But no quantitative criteria on the expected recovery efficiency

Two-Stage Incinerator Examples


Waste "gasifiers"/"two-stage" incinerators vs. modern incinerators

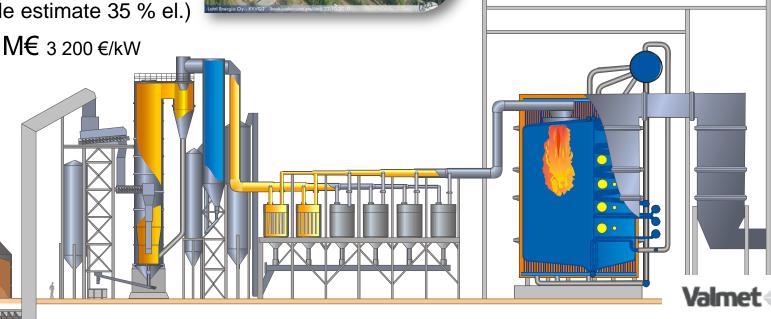
- lower efficiency
 - o partially due to smaller scale
 - \circ partially for process reasons
- similar air pollution control (APC) technology,
 i.e. similar environmental performance

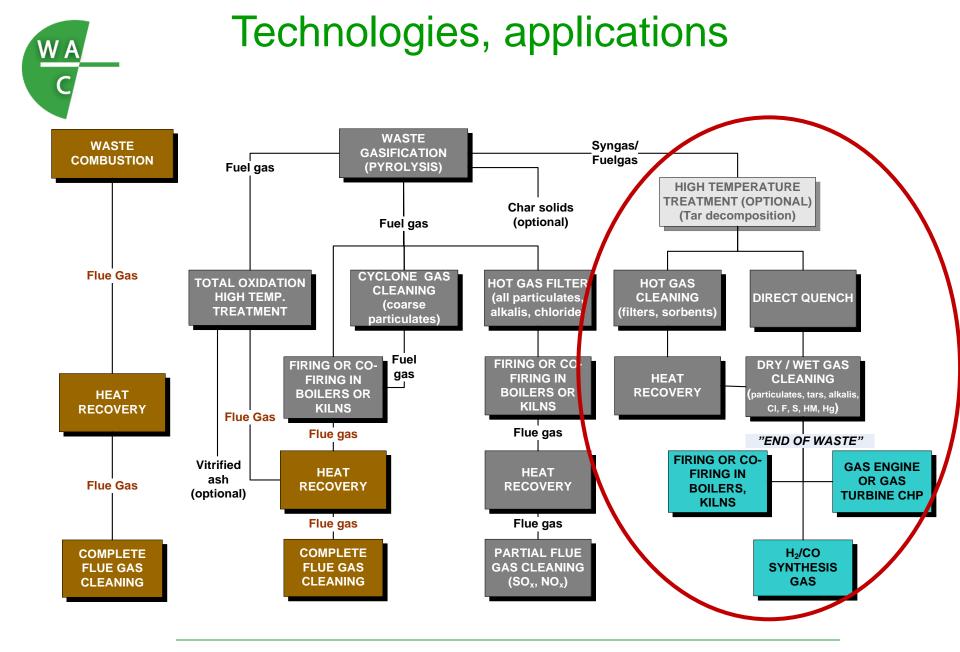
Drivers

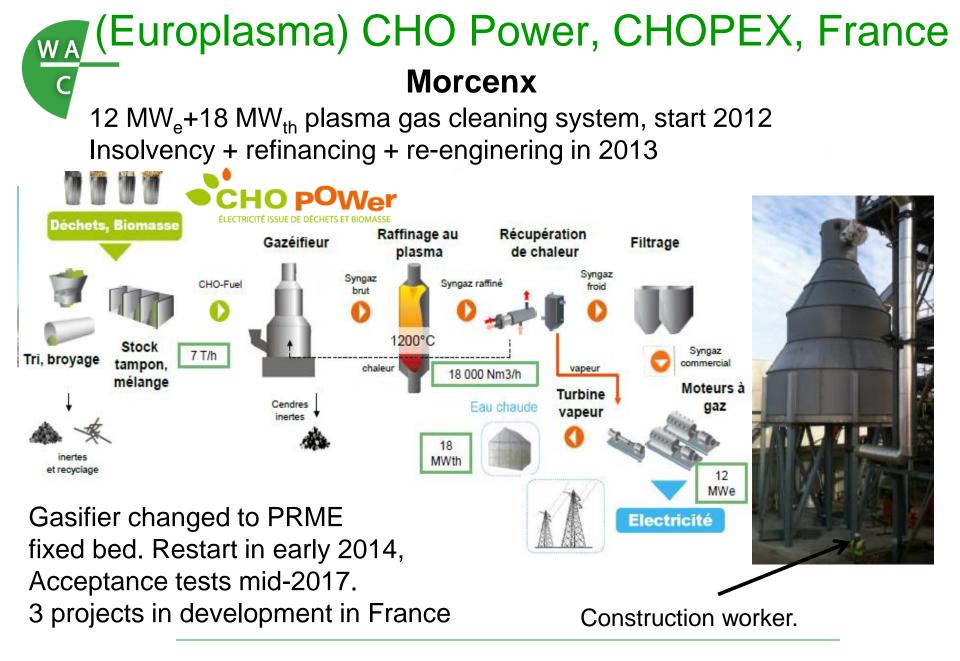
- claimed cost benefit at small scale
- potential for ash vitrification w/o external energy (Japan)
- UK Renewable Obligation system promoted gasification technology in the past
- 2 MJ/Nm³, 1 ROC/MWh, 4 MJ/Nm³, 2 ROC/MWh
- Waste incinerators w/o CHP 0 ROCs
- New UK CfD system spark price for R1 "Advanced Conversion Technology" 114 £/MWh 2014, 74 £/MWh 2017

Efficiency to electric energy (biofuels)

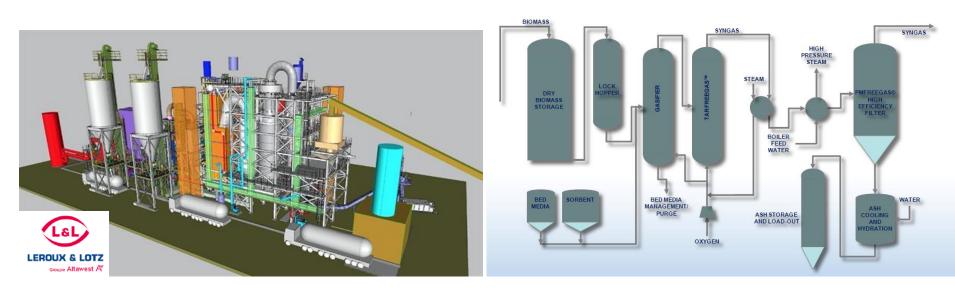
WΑ


Kymijärvi II, Lahti, Finland


Fuel 2*80 MW SRF etc. 250 000 ton waste / year 120 bar/ 540C 50 MW_e / 90 MW_{th}. 31 % / 88 % efficiency (Reheat cycle estimate 35 % el.) TIC ~160 M€ 3 200 €/kW


N A

30 000 op. hrs 2012 to 2016 Fuel quality an issue. Gas filter new feature, maintenance, learning. Gas firing, emissions OK, no corrosion in boiler or gas cooler



Other developments, France and UK

SynTech Bioenergy Centre Ltd, Wednesbury

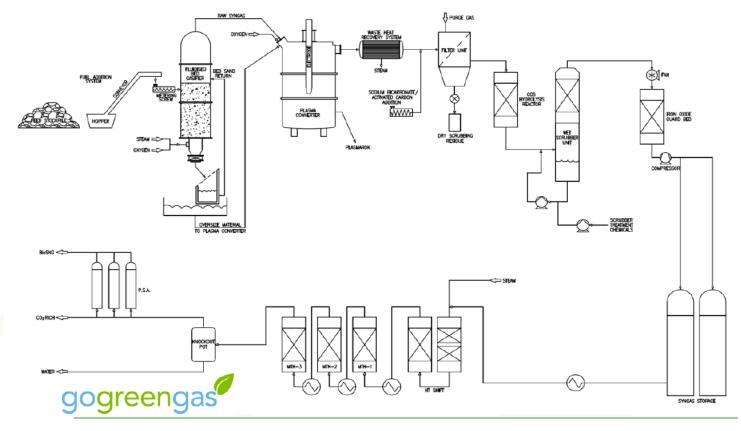
LLT, Villers-sous-Montrond

CFB gasifier + thermal tar reactor + gas cleaning system + motors, 7 MW_e + 10 $MW_{th.}$ In construction to start in 2018 Parent of **Frontline Bioenergy** LLC. 40 ton/day RDF, 1.5 MWe, some CHP Press. O2-blown FB, thermal reformer, gas cleaning to "end-of-waste", high-efficiency engine 10 million £ cost, 50 % from ETI Mechanical completion end of 2017

Air Products, Ineos

Teesside, UK

2 *350 000 ton/year waste Each 49 MW_e gross, 37 MW_e net. AlterNRG atm. Plasma gasifiction, 2*Solar Titan GT-CC per unit Ext. pre-combustion gas cleaning Investment 500 million \$ per unit Commissioning in 2014. Both projects stopped in 2016


Vero Beach, FL

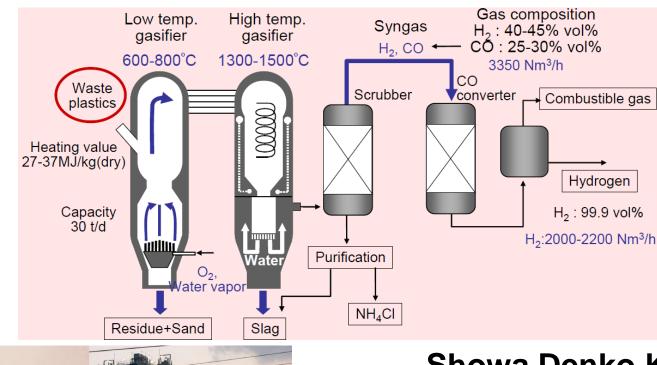
Biomass waste, MSW Syngas fermentation 30 000 m³ of ethanol, 6 MW_e gross Oxygen-blown two-stage gasifier 130 million \$. Commissioning late 2012, reengineering in 2014 and restart. Ineos stopped activities in 2016.

GoGreenGas

27 M£, 4.4 MW SNG Demo in construction in Swindon to start 2018.
Support 11M£ Dep. Of Transport, 5 M£ Ofgem
Partners Cadent (8.7 M£), APP, Carbotech, Progressive Energy
APP gasification (Outotec oxygen-blown FB gasifier, plasma reformer)
AMEC Foster Wheeler gas conditioning, synthesis

Enerkem, Edmonton, Kanada

100 000 ton per year RDF plant. Product 38 000 m³ of methanol/ethanol Commissioning initiated 2013, installed ethanol step 2016. Ramping up production in 2018.


Plans for 220 000 m³ methanol in Rotterdam for plastic wastes

EP ENVI RED II Amendments

- Annex IX Part A. Feedstocks for the production of advanced biofuels and fuels, the contribution of which towards the target referred to in the first subparagraph of Article 3(4) shall be considered to be twice their energy content:
- (a) Algae if cultivated on land in ponds or photobioreactors.
- (b) Biomass fraction of mixed municipal waste, but not separated household waste subject to recycling targets under point (a) of Article 11(2) of Directive 2008/98/EC.
- (c) Bio-waste as defined in Article 3(4) of Directive 2008/98/EC from private households subject to separate collection as defined in Article 3(11) of that Directive.
- (d) Biomass residues resulting from other renewable fraction of industrial production waste not fit for use in the food chain, or feed chain or for reprocessing into not food material. This includes including material resulting from retail and wholesale and the biobased chemical productions, agro-food and fish and aquaculture industry, and excluding feedstocks listed in part B of this Annex. etc.

Ebara-Ube

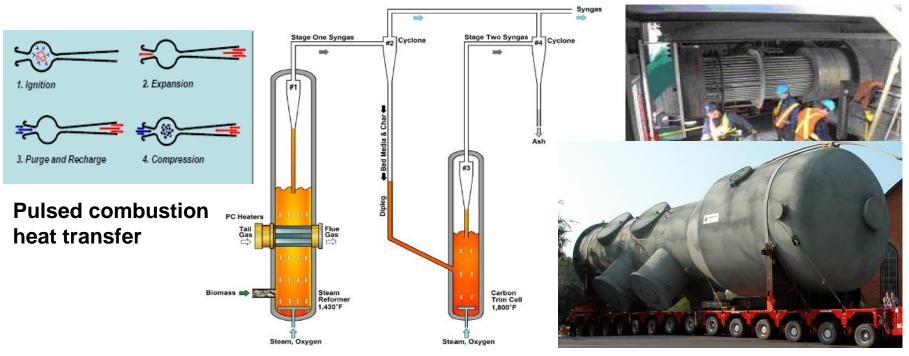
Showa Denko K.K

EUP technology

64 kton/y plastic waste. Start-up 2003. Syngas for hydrogen and ammonia

Expansion of the plant in 2015 to make 65 % of the hydrogen required for ammonia production

IEA Bioenergy Task 33 2018-05-08


WA

Thermochem Recovery Inc (TRI)

C Directly-, indirectly-heated, fluidized bed steam reforming

Black liquor gasifier in operation since 2006 (Norampac, Trenton, Ont.) Pilot plant 4 ton per day w. integrated FT synthesis at Durham NC

- Gasifier supplier to Fulcrum Sierra biofuels
 - 160 kton RDF, 40 000 m³ FT fuels. Reached financial closure in 2017
- TRI is partnering with Velocys, BA for waste plants in the UK.

Waste gasification strategic aspects Gasification-related factor Waste available for thermal treatment Waste reduction schemes Land fill bans Special wastes, recycling Conv. treatment overcapacity

Economics of thermal treatment

General decline in power prices L Expansion of RE power F Lower heat demand, heat pumps etc. E Carbon pricing for fossil part Investment costs to meet BAT Risk, new technology introduction barriers

Land fill bans and disposal cost R3 recovery as chemicals Biofuels incentives?

Other aspects of thermal treatment

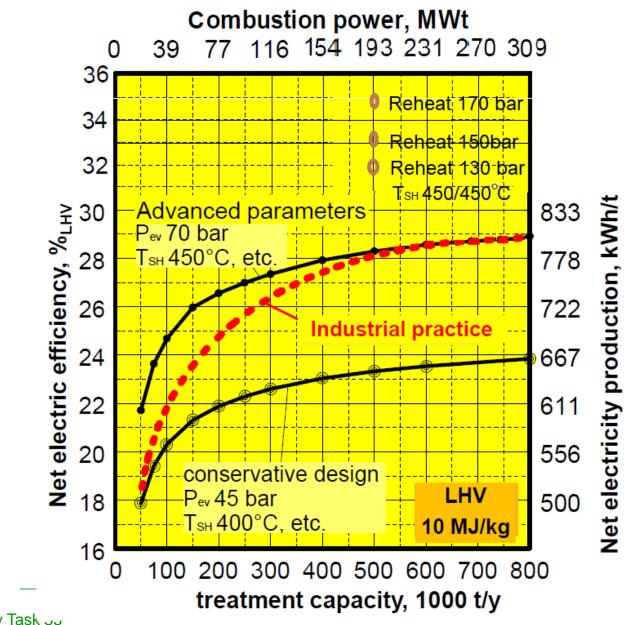
Acceptance of waste-derived fuels New technology introduction barriers

Land fill bans Changes to R1 efficiency value?

Thank you for your attention

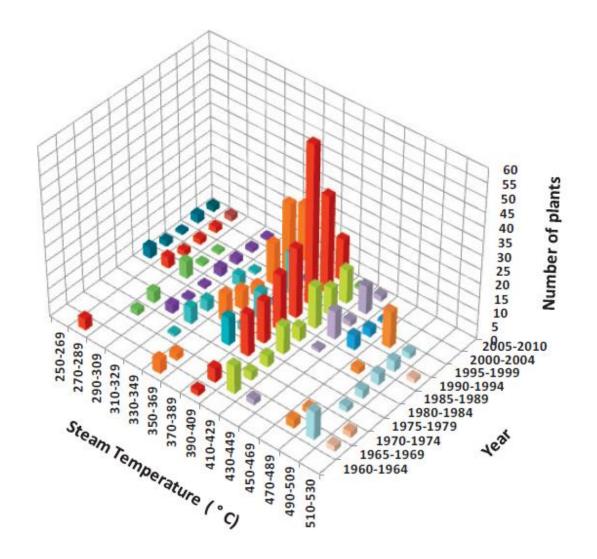
Gasification news available at IEA Bioenergy Task 33 Thermal Gasification web page

task33.ieabioenergy.com/



Limiting Emission Values

mg/Nm ³ dry gas @ 11 % O ₂	EU Waste or Biomass firing (in brackets gas boilers, ICE,GT)		USA Waste Incineration 40 CFR Part 60			Japan		
Contaminant	IED	Biomass LCP	Biomass MCP	Large	Small	Biomass	Air	Typical
		>50 MW	1-50 MW	incinerators	incinerators		Pollution	Client
							Act**	Criteria
Dust	10	13 (n.l)	13-33 (n.l.)	14	17	4	44-90	11
CO	50	66	n.l.	15	45-180*	215	42	< 42
		(55, 166)						
SO2	50	100-130	130	61 or	61 or	15	Site	160-175
		(20, n.l.)	(n.l.)	80 % red.	80 % red.		specific	
NOx	200	100-130	200-333	220	220	425	280-500	< 50
		(55, 83-125)	(316-333)					
HCL	10			29 or	29 or	0.2	780	90-100
				95 % red.	95 % red.			
* Technology dependant. Mass brun lowest, stoker intermediate, fluid. bed highest								
** The order establishing LEVs is undergoing revision and an amended order is expected shortly								


** The order establishing LEVs is undergoing revision and an amended order is expected shortly

IEA Bioenergy Task JJ 2018-05-08

