

Institute of Mechanics, Materials and Civil Engineering

Impact of steam injection and air enrichment on two-stage downdraft wood gasification

Arnaud Rouanet October 19th, 2022

LE FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL WALLONIE INVESTISSENT DANS VOTRE AVENIR

IEA Bioenergy Task 33 Workshop Vienna, Austria

Two-stage downdraft gasification Applied to CHP and small industrial processes

Two-stage downdraft gasifier

The NOTAR[®] REACTOR

Physically separated **PYROLYSIS**

Independently controlled **COMBUSTION**

REDUCTION ZONE

SYNGAS

Research objectives Enhance two-stage downdraft gasification with steam and O₂

Support process stability under O₂ enrichment

Agenda

1. Experimental set-up and conditions

- 2. Air-steam gasification
- 3. Air-O₂ and O₂-steam gasification

Test Gasifier Plant

Gasifier

Clean syngas to flare/engine

2. Ash extraction

4. Condenser with water scrubbing for tar removal

5. Granular filters

3. Cyclone

Wood chips hopper

Oven-dry wood chips Moisture content = 8.7%LHV = 16.5 MJ/kg CH_{1.32}O_{0.65}

Ic packaging

Steam injection

Injection with the secondary air in the oxidation zone

Oxygen generator

Tar protocol

Syngas composition analysis **Direct analyser with NDIR and TCD + on-line GC-MS/FID/TCD** CO H_2 C_6H_6 N_2 CO_2

 C_2H_4 C_2H_6 CH₃OH CH₃COCH₃ C_3H_6 H_2S COS

. . .

 CH_4

Experimental conditions

10 kg/h

20 kg/h

1

2

0.3

0.6

4. Steam temperature

LT 100-150°C HT 250-450°C

2. Steam-to-Oxygen ratio (SOR) mol/mol

Agenda

- 1. Experimental set-up and conditions
- 2. Air-steam gasification
- 3. Air-O₂ and O₂-steam gasification

Syngas composition Steam shifts composition from CO to H₂

Syngas composition - Air+Steam

Syngas LHV Impact of steam is limited, compared to increased air flow

Syngas LHV [kJ/Nm3]

Gasification efficiency

Tar composition and dew point Improved conversion of secondary and tertiary tar into benzene

Agenda

- 1. Experimental set-up and conditions
- 2. Air-steam gasification
- 3. Air-O₂ and O₂-steam gasification

O₂-steam: Syngas composition Steam (still) shifts composition from CO to H₂

Syngas composition - O2+steam

O₂-steam: Oxidation zone temperature Steam damps temperature fluctuations from O₂ enrichment

O₂-steam: Oxidation zone temperature

Steam damps temperature fluctuations from O₂ enrichment

Eq. air flow Steam T° Air/O_2 Air $\left(\circ \right)$ O_2

O₂-steam: Gasification efficiency Steam (still) enhances carbon conversion efficiency

Light hydrocarbons Steam and O₂ increase the presence of C₂ and benzene

Conclusions

- •Steam efficiently acts as a "thermal damper" in combination with O_2 , at the cost of a small reduction of the syngas LHV
- •Steam favors a complete carbon conversion, for a higher gasification efficiency. **CGE** is maximized by the combined use of steam and oxygen
- •Steam supports the reforming of secondary and tertiary tar into benzene

- •Steam "shifts" syngas composition from CO to H₂, boosting the H₂/CO ratio
- •Oxygen use at the secondary stage yields a +60% increase of the syngas LHV

Perspectives

Remaining work on the experimental data:

- Analysis of tar samples by GCMS
- Refined post-processing:
- Future experiments:
- Injection of steam and oxygen in the pyrolysis zone

\rightarrow impact of secondary factors (eq. air flow, steam temperature, air ratio) \rightarrow impact of **uncontrolled factors** (gasifier pre-heating, pyrolysis zone stability)

Institute of Mechanics, Materials and Civil Engineering

Impact of steam injection and air enrichment on two-stage downdraft wood gasification

Arnaud Rouanet

October 19th, 2022

FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL WALLONIE INVESTISSENT DANS VOTRE AVENIR

IEA Bioenergy Task 33 Workshop Vienna, Austria

