
Decentral Production of PEMFC Suitable Hydrogen from Air Gasification of Wood

TECHNISCHE

UNIVERSITÄT

Vienna | Austria

WIEN

Decentral Production of PEMFC Suitable Hydrogen from Air Gasification of WoodOutline

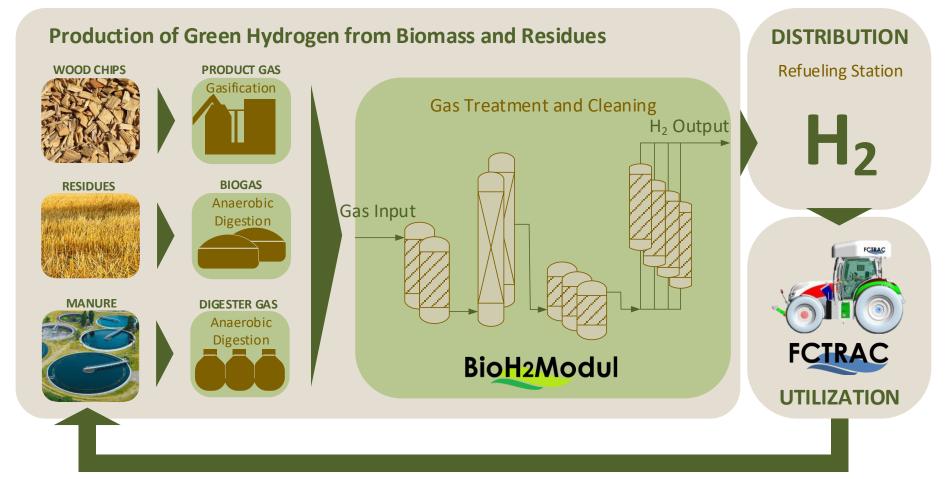
Introduction – Project FCTRAC

BioH₂Modul

- Process Chains for H₂ Production from Biomass-derived Gases
- Motivation H₂ Production in Existing CHP Plants
- Design Case of BioH₂Modul and Plant Capacity
- Current Status on Site in Carinthia
- Next Steps and Outlook

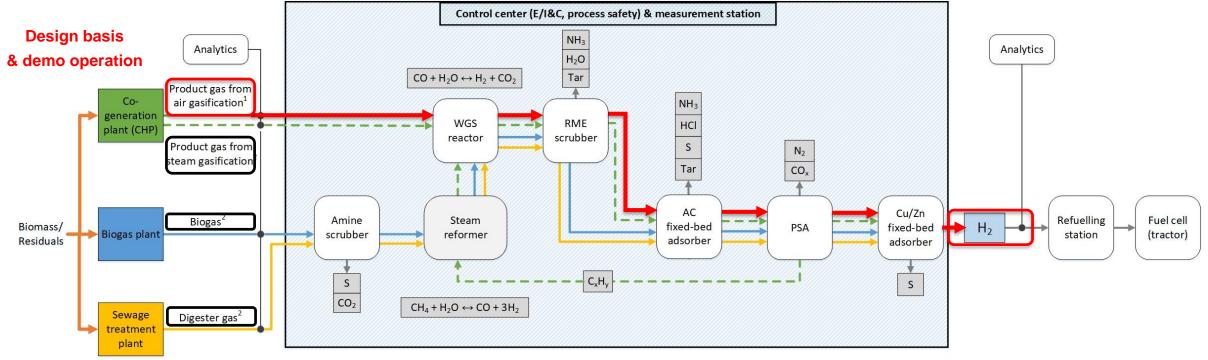
Mini-BioH₂Modul

- Lab-scale Investigations at ICEBE Technical Laboratory
- Experiments with a Lab-scale Pressure Swing Adsorption Plant for H₂ Production from Synthetic Gas Mixtures



Project FCTRAC

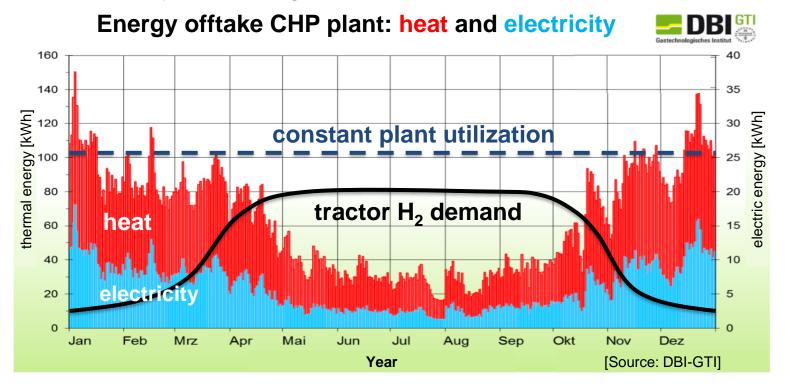
Concept of Sustainable and Input-flexible H₂ Production for Fuel Cell Tractor Application


CIRCULAR ECONOMY

Process Chains for H₂ Production from Biomass-derived Gases Concept of Flexible BioH₂Modul

¹ Basis for design of BioH₂Modul

Techno-economic assessment

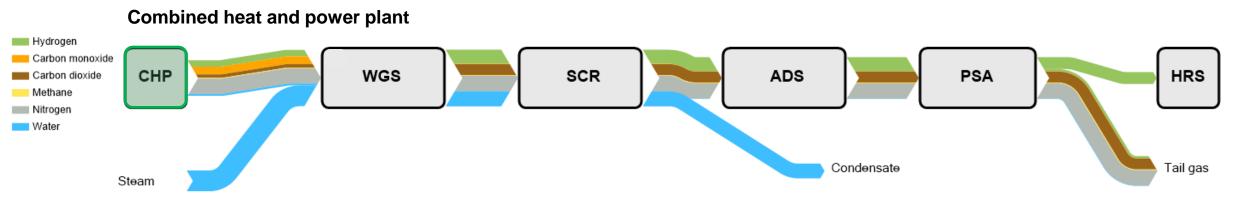

² Process simulation for flexible BioH₂Modul

Motivation

H₂ Production in Existing CHP Plants

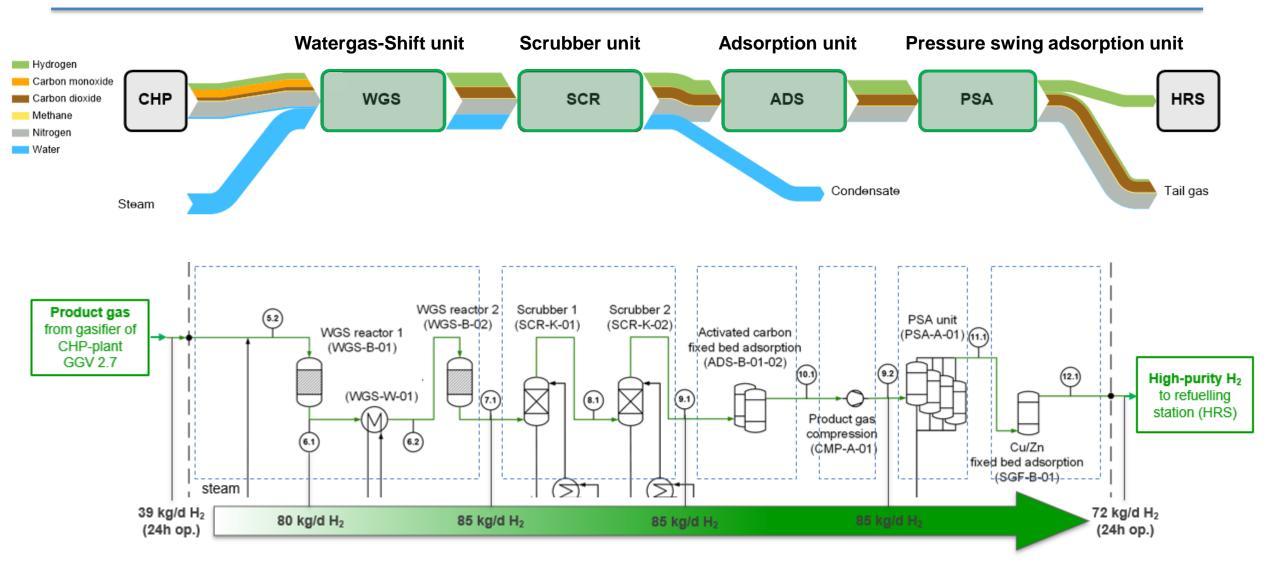
Seasonal energy demand: CHP plant heat and electricity output

- → High potential for H₂ production by existing plants in low energy season
- → Increase of overall efficiency of existing plants constant plant utilization


https://www.dbi-gruppe.de/files/PDFs/Flyer_Broschuere/81_Gasanwendung_FY_Monitoring_2014.pdf -

Design Case of BioH₂Modul and Plant Capacity Detailed Process Chain

Gas composition	Unit	Fixed-bed gasifier product gas ¹
H ₂	vol% _{db}	17.2
CO	vol% _{db}	21.2
CO ₂	vol% _{db}	12.6
CH ₄	vol% _{db}	2.5
N ₂	vol% _{db}	46.0
C_xH_y	vol% _{db}	0.4
H ₂ O	vol%	n.a.


¹ M. Simone, F. Barontini, C. Nicolella und L. Tognotti: Gasification of pelletized biomass in a pilot scale downdraft gasifier. Bioresource Technology (116), 403-412 (2012)

Design Case of BioH₂Modul and Plant Capacity Detailed Process Chain

Design Case of BioH₂Modul and Plant Capacity Detailed Process Chain

Hydrogen refueling station Hydrogen Carbon monoxide WGS SCR ADS CHP **PSA** HRS Carbon dioxide Methane Nitrogen Water Tail gas Condensate Steam

Hydrogen qualitiy according to ISO 14687

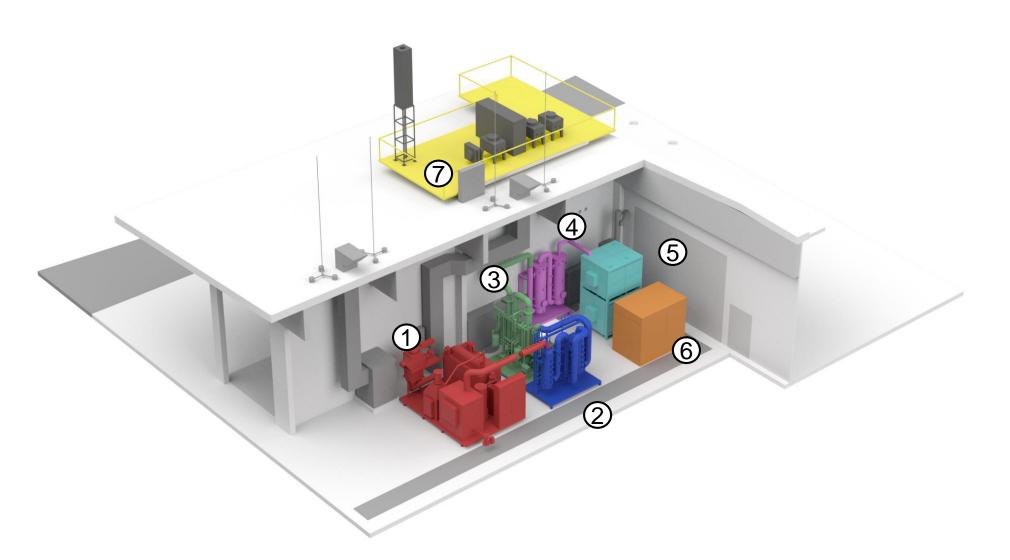
Table 2 — Fuel quality specification for PEM fuel cell road vehicle application

Constituents ^a (assay)	Type I, Type II grade D			
Hydrogen fuel index (minimum mole fraction)b	99,97 %			
Total non-hydrogen gases (maximum)	300 μmol/mol			
Maximum concentration of individual contaminants				
Water (H ₂ 0)	5 μmol/mol			
Total hydrocarbons except methane ^c (C1 equivalent)	2 μmol/mol			
Methane (CH ₄)	100 μmol/mol			
Oxygen (O ₂)	5 μmol/mol			
Helium (He)	300 μmol/mol			

For the constituents that are additive such as total hydrocarbons and total sulphur compounds the sum of the

Constituents ^a (assay)	Type I, Type II grade D
Nitrogen (N ₂)	300 μmol/mol
Argon (Ar)	300 μmol/mol
Carbon dioxide (CO ₂)	2 μmol/mol
Carbon monoxide (CO) ^d	0,2 μmol/mol
Total sulphur compounds ^e	0,004 μmol/mol
(S1 equivalent)	
Formaldehyde (HCHO) ^d	0,2 μmol/mol
Formic acid (HCOOH) ^d	0,2 μmol/mol
Ammonia (NH ₃)	0,1 μmol/mol
Halogenated compounds ^f	0,05 μmol/mol
(Halogen ion equivalent)	
Maximum particulate concentration ^g	1 mg/kg

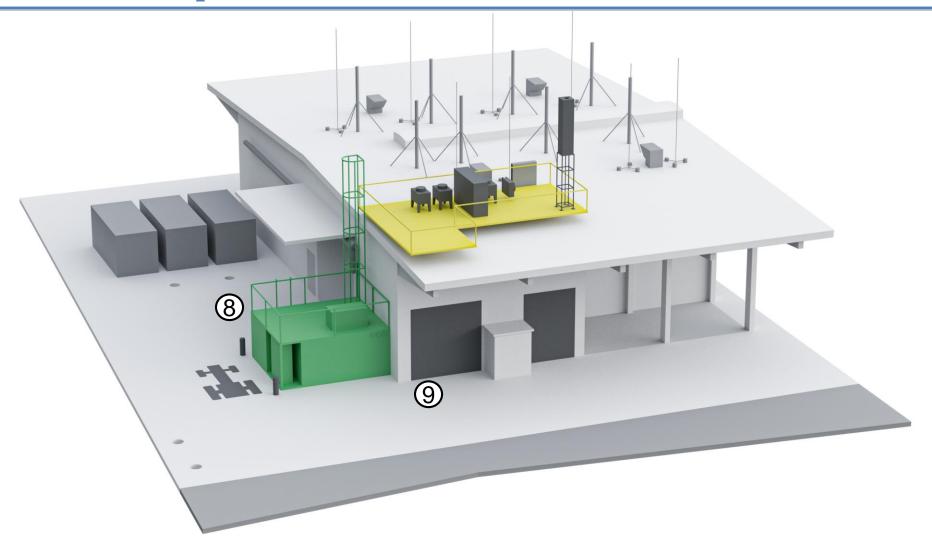
For the constituents that are additive, such as total hydrocarbons and total sulphur compounds, the sum of the



Current Status on Site in Carinthia

3D Model of BioH₂Modul

- (1) CHP plant
- (2) Watergas-Shift unit
- (3) Scrubber unit
- (4) Adsorption unit
- (5) Compressor unit
- (6) Control station
- (7) Auxiliary units



Current Status on Site in Carinthia

3D Model of BioH₂Modul

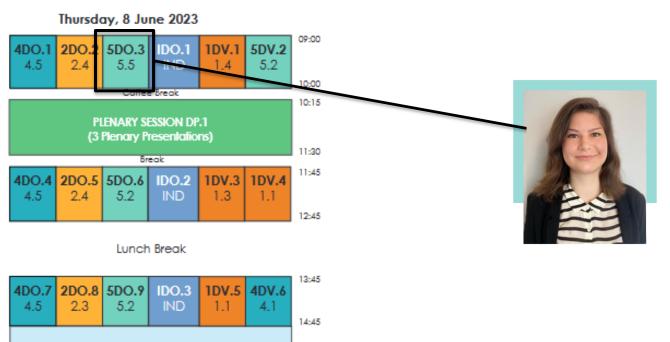
- (8) Hydrogen refueling station
- (9) Pressure swing adsorption unit



Next steps

Demonstration Operation of BioH₂Modul

- Detail engineering and safety workshops completed
- Ongoing plant approval procedure
- Commissioning of BioH₂Modul planned in September 2023
- Demonstration operation á 2 weeks
 - 1. Campaign: Steady-state operation
 - 2. Campaign: Parameter variations
 - 3. Campaign: Optimization
- Clarification of open issues in gas cleaning



Techno-economic Analysis of BioH₂Modul

Presentation @ EUBCE 2023 in Bologna

Closing

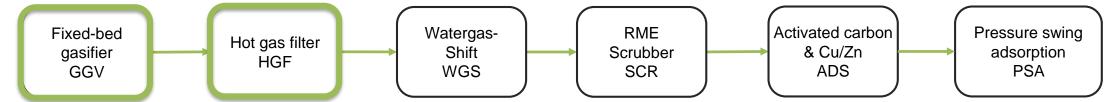
"Techno-economic and Environmental Assessment of 1 MW Hydrogen Production from Woody Biomass Gasification"

VERONICA GUBIN

Vienna University of Technology, AUSTRIA

Session reference: 5DO.3.4

► Techno-economic and Environmental Assessment of 1 MW Hydrogen Production from Woody Biomass Gasification

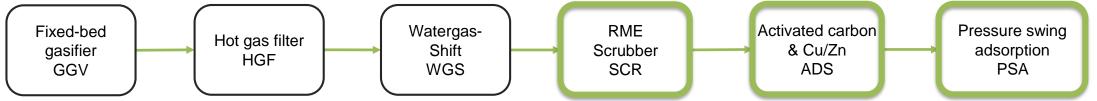


Mini-BioH₂Modul

Lab-scale Investigations at ICEBE Technical Laboratory

Mini-BioH₂Modul

Lab-scale Investigations at ICEBE Technical Laboratory



Mini-BioH₂Modul

Lab-scale Investigations at ICEBE Technical Laboratory

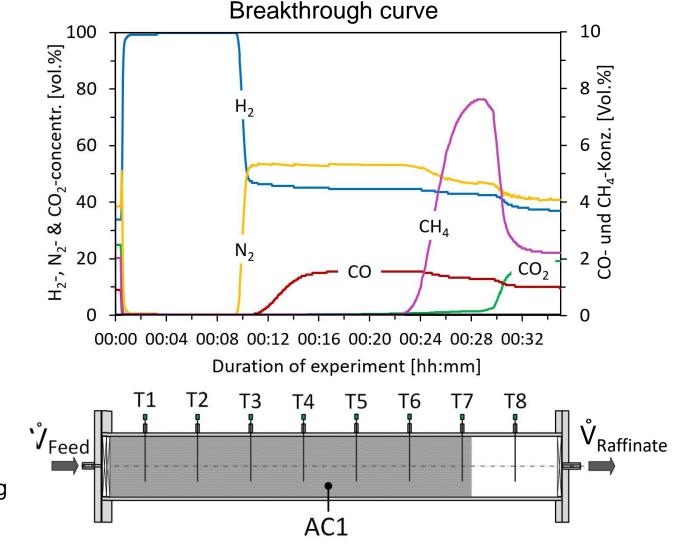
Procedure:

- 1. Adsorbent screening with manual operation of the PSA
 - Determination of the loading capacity X_i as a function of:
 - Adsorption pressure
 - Feed gas composition
 - → "Breakthrough curves"

 $X_i(p_i) = \frac{Adsorbate\ mass}{Adsorbent\ mass}$

- 2. Selection of adsorbents & determination of adsorbent quantities
 - E.g. activated carbon (AC) for CO₂- & zeolite (ZMS) for N₂-removal
- 3. Automated operation of the PSA
 - → Determination of KPIs at selected operating parameters (Adsorption time, pressure levels, etc.)

Mini BioH₂Modul


Experiments with a Lab-scale PSA Plant for H₂ Production from Synthetic Gas Mixtures

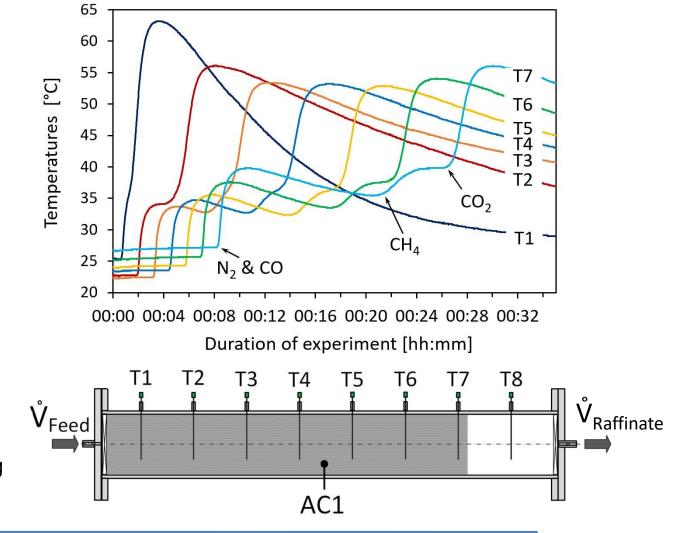
Breakthrough curve

- Adsorptive mass transfer zones (MTZs) migrate through adsorbent filling with different velocities
- → different breakthrough times t_{BT,i}
- Determination of the loading capacity X_i (of adsortive i):
 - Feed volumetric flow rate
 - Concentration of adsorptive i in the feed
 - Breakhrough time t_{DB,i}
 - Adsorbent mass m_{Ads,k}

Temperature profile:

Estimation of the MTZ position in adsorbent filling

Mini BioH₂Modul


Experiments with a Lab-scale PSA Plant for H₂ Production from Synthetic Gas Mixtures

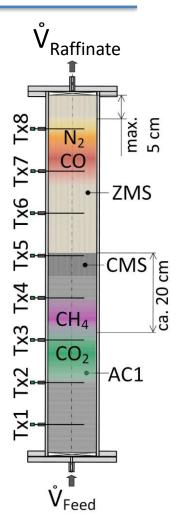
Breakthrough curve

- Adsorptive mass transfer zones (MTZs) migrate through adsorbent filling with different velocities
- → different breakthrough times t_{BT.i}
- Determination of the loading capacity X_i (of adsortive i):
 - Feed volumetric flow rate
 - Concentration of adsorptive i in the feed
 - Breakhrough time t_{DB,i}
 - Adsorbent mass m_{Ads,k}

Temperature profile:

Estimation of the MTZ position in adsorbent filling

Temperature profile

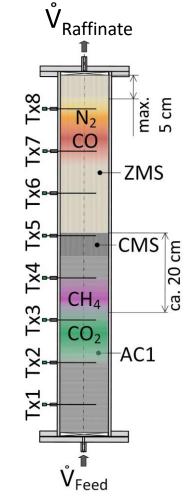

Mini BioH₂Modul

Experiments with a Lab-scale PSA Plant for H₂ Production from Synthetic Gas Mixtures

By optimization of the experimental parameters:

ters	Parameters of adsorption			
parameters	Adsorption pressure (Reference)	p _{Ads} =	6,50	[bara]
ıl pa	Pressure equalization at	p _{Equil} =	4,75	[bara]
enta	Adsorption time	t _{Ads} =	480	[s]
Experimental	Feed gas parameters			
Ex	Volumetric flowrate	V _{Feed} =	12,5	[slm]

	., >	Key performance indicators: H ₂			
	cessienc	Purity	φ _{H2} =	> 99,9	[Vol.%]
1	Pro effic	Recovery	Y _{H2} =	79,0	[%]
		Productivity	P _{H2} =	1,33	[NI/(kg·min)]

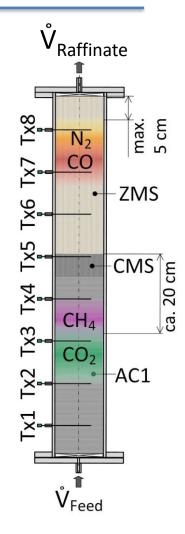

Experiments with a Lab-scale PSA Plant for H₂ Production from Synthetic Gas Mixtures

By optimization of the experimental parameters:

	Raffinate composition			
Feed gas components	Reference (ISO 14687)	Obtained		
	[vol.%] bzw. <i>[vol.ppm]</i>	[vol.%] bzw. [vol.ppm]		
H ₂	> 99,97	> 99,9		
N ₂	< 300	N.n. ¹⁾		
СО	< 0,2	< 0,5 1)		
CO ₂	< 2	< 5 ²⁾		
CH ₄	< 100	N.n. ¹⁾		

¹⁾ N₂-, CO- & CH₄-concentrations below detection limits of gas analysis. However, significantly lower concentrations than detection limit can be assumed ²⁾ Continuing trend downwards

ISO 14687, "Hydrogen Fuel Quality – Product Specifications", 2019



Experiments with a Lab-scale PSA Plant for H₂ Production from Synthetic Gas Mixtures

Achieved so far:

s 5	Key performance indicators: H ₂			
cess	Purity	φ _{H2} =	> 99,9	[Vol.%]
Pro effic	Recovery	Y _{H2} =	79,0	[%]
9	Productivity	P _{H2} =	1,33	[NI/(kg·min)]

- For further improvement of the KPIs:
 - Adjustement of adsorbent filling → Recovery > 80% possible
 - Adsorbent screening of additional adsorbens
 - Mandatory: Improvement of gas analyis → Compliance with limits according to standard verifiable

Thank you for your attention!

Dipl. -Ing. Veronica Gubin Project Assistant

Institute of Chemical, Environmental and Bioscience Engineering Technische Universität Wien

Getreidemarkt 9/166 1060 Vienna, Austria Tel.: +43-1-58801-166705 veronica.gubin@tuwien.ac.at https://www.vt.tuwien.ac.at/home

Dipl. -Ing. Ferdinand ThelenProject Assistant

Institute of Chemical, Environmental and Bioscience Engineering Technische Universität Wien

Getreidemarkt 9/166 1060 Vienna, Austria Tel.: +43-1-58801-166756 ferdinand.thelen@tuwien.ac.at https://www.vt.tuwien.ac.at/home