

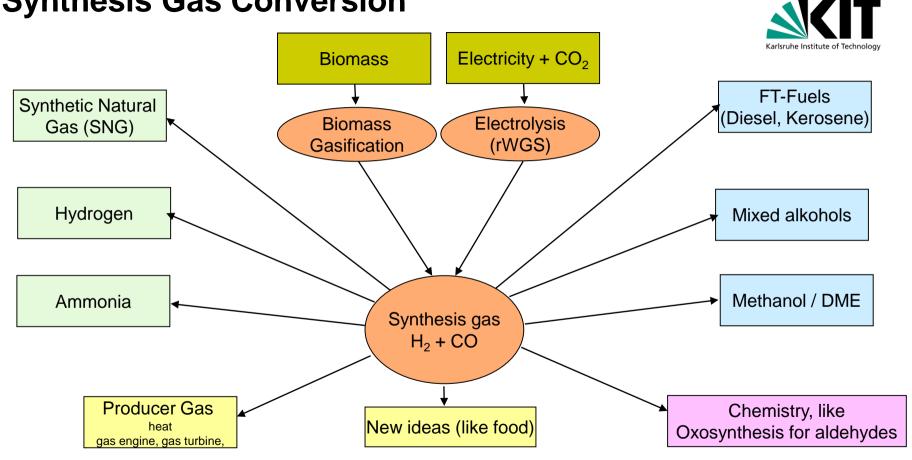
Conversion of Renewable Synthesis Gas

Reinhard Rauch

IEA Bioenergy Task 33 workshop "Valuable (by-)products of gasification" on 19th October 2022

www.kit.edu

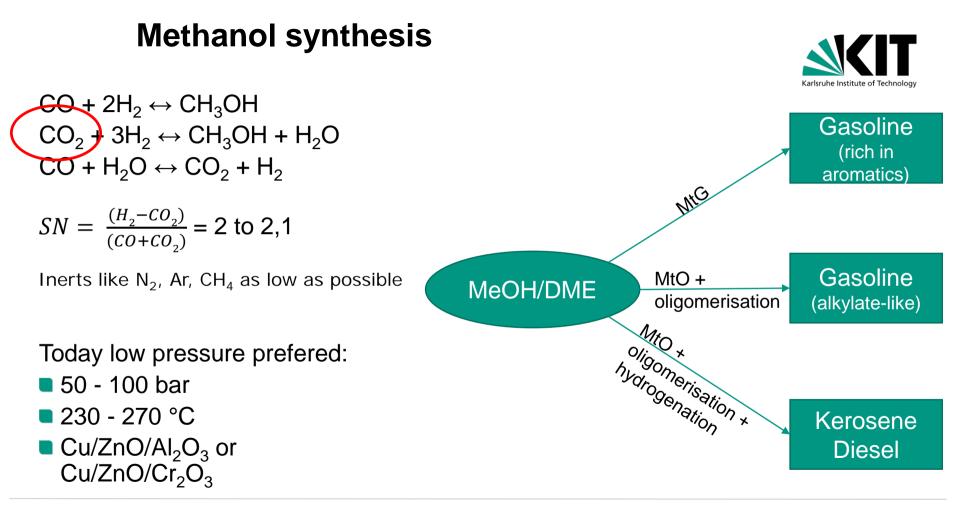
25.10.2022


KIT: Figures and Facts 2021

5 Campuses – 200 ha area **37** Spinoffs and Startups 385 Professors and executive 367 Trainess scientists 22,225 Students **300** Buildings with a usable KIT budget 2021 area of 492,000 m² EUR 1090,7 million 3,100 Doctoral students 41% **51** Patent applications Third-9,783 Employees party 28% funds Federal 1,405 international scientists funds Status: Mai 2021

Engler-Bunte-Institute

Synthesis Gas Conversion



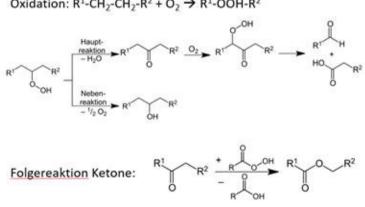
Fischer Tropsch Synthesis

$$CO + 2H_2 \implies -(CH_2) - + H_2O$$

Parameter	Low-temperature FT	High-temperature FT	
Products	Waxes and/or diesel fuels	Gasoline, light olefins	
Temperature [°C]	220 - 250	330 - 350	
Pressure [bar]	25 - 60	25	
CO + H_2 conversion [%]	60 - 93	85	

Prof. Dr. Reinhard Rauch

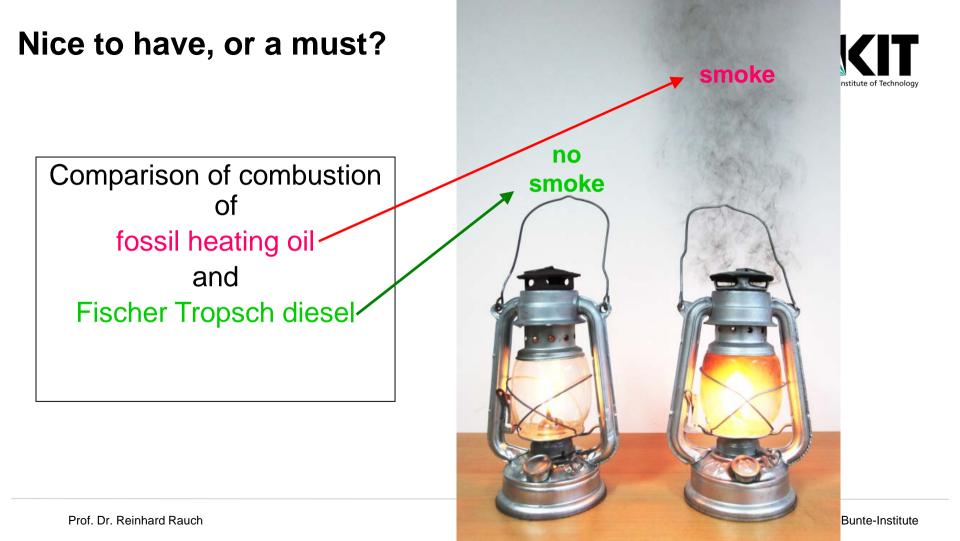
Products from Synthesis Gas (e.g. Sasol)


- Acetate
- Acrylate monomers
- Alkyl benzene
- Alkyl phenol
- C6+ alcohols
- Explosives
- Fertilisers
- Glycol ethers
- Hydrocarbon blends (white spirits)
- Inorganics
- Ketones

- Lacquer thiners
- Light alcohols
- Mining chemicals
- Phenolics or cresylic acids
- Polymers
- Wax
- Argon
- Xenon
- Bitumen
- Fuel oils
- Lubricants

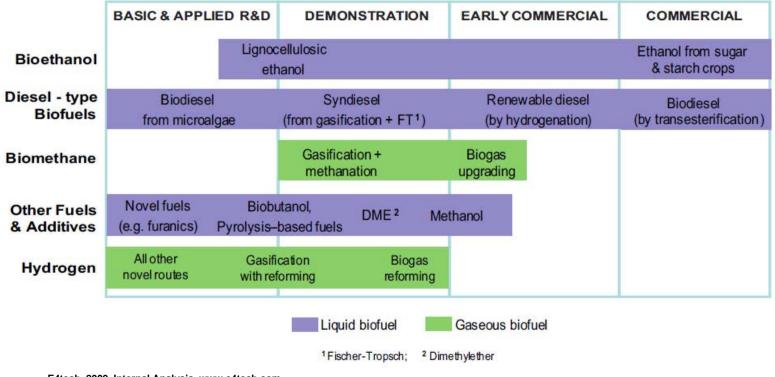
Food and Feed: oils and fats from FT

- Developed in 1935 in Germany by Arthur Imhausen to produce synthetic soap and/or butter from coal
- Production capacity for butter was about 600 t/month
- After WW II the production was stopped and the FT plants were dismantled
 Oxidation: R¹-CH₂-CH₂-R² + O₂ → R¹-OOH-R²
- Principle is oxidation of paraffin's
- Byproducts are CO₂, organic acids, peroxides, aldehydes, alcohols
- By combination with glycerin synthetic fats can be produced


Source:

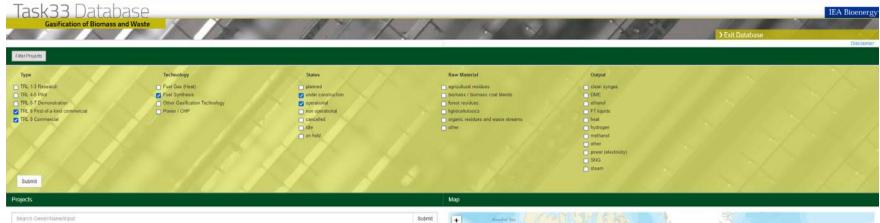
- <u>https://de.wikipedia.org/wiki/Paraffinoxidation</u>
- de Klerk Continuous-Mode Thermal Oxidation of Fischer-Tropsch Waxes, Ind. Chem. Res. 2003, 42, 25, 6545-6548

Comparison



synthesis	Educts	Ratios	Selectivity	Conversion per pass	Status
MeOH	CO, CO ₂ , H ₂	$SN = \frac{(H_2 - CO_2)}{(CO + CO_2)} \sim 2,1$	>99%	~40	Commercial (fossil)
FT	CO, (CO ₂), H ₂	H ₂ :CO > 2:1 (Co) H ₂ :CO ~ 1-2 (Fe)	ASF- distribution	~60 (LT) ~85 (HT)	Commercial (fossil)
Mixed alcohols	CO, CO ₂ , H ₂	H ₂ :CO ~ 1-2 (MoS)	CH₄ as by product	~10-30	R&D
hydrogen	CO, H ₂	-	-	>90	Commercial (fossil)

Development Status

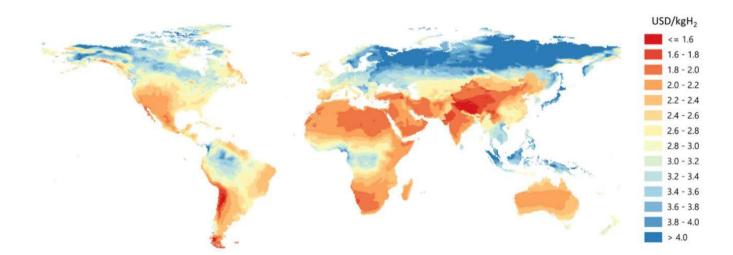


E4tech. 2009. Internal Analysis, www.e4tech.com

Ongoing Projects

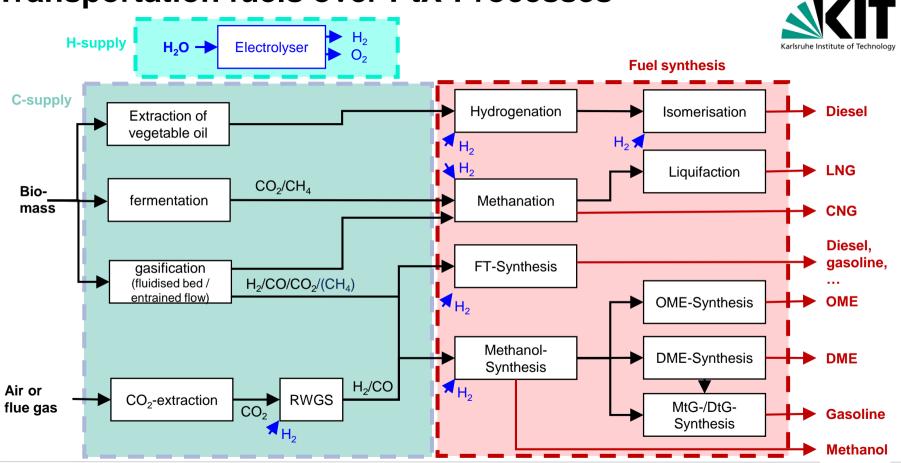
			1.55500
Owner	Name	Location	
Advanced Biofuels Solutions Ltd	Swindon Advanced Biofuels Plant	United Kingdom	Info
BioMCN	BioMCN commercial	Netherlands	otni
Enerkem Alberta Biofuels LP	Edmonton Waste-to-Biofueis Project	Canada	ohni
Fulcrum BioEnergy	Sierra Biofuels	United States	Info
Red Rock Biofuels	Commercial	United States	info

2010: SGC Energia Finished Successfully their 1 bpd Demo


Prof. Dr. Reinhard Rauch

Engler-Bunte-Institute

Outlook to the future of hydrogen production


Hydrogen costs from hybrid solar PV and onshore wind systems in the long term

For comparison: H₂ from natural gas had costs of 1-3USD/kgH₂ before the Ukraine crisis

Source: https://www.iea.org/reports/the-future-of-hydrogen (14/01/2022)

Transportation fuels over PtX-Processes

Engler-Bunte-Institute

Conclusion

- Synthesis gas conversion for fossil syngas is commercial, for BtL the progress could be better
- Power to Liquids is developing
- There are many similarities between PtL and BtL, the synthesis step is almost the same, main difference are:
 - Gas composition
 - Operation mode, as BtL is steady state and PtL is fluctuating
- Economy of scale is one major hurdle for BtL and PtL compared to fossil technologies
- Hybrid systems, where BtL and PtL are combined could offer some advantages for locations in Europe, like winddiesel (www.winddiesel.at)

Questions?

H₂:CO = Fischer Tropsch CO₂ - separation 2:1 Gas Condenser Dry comp. synthesis cleaning H₂: 15% Dry comp.: CO: 37% H₂: 63% High Efficiency CO: 41% CO: 31% Gas cleaning CH₄: 5% CO₂: 0% CH4: 4% H₂O: 16% °O₂ output Syngas generation Steam steam generation FT - product M separation Condenser Biomass Additional necessary Winddiesel Steam = 0,5% Equipment: CO2=99,5% These + Renewable H₂ FT unit 70% CO>-rec. = 100% generation larger steam CO₂-output = 0%

Winddiesel full load operation-Full electrolysis power

Prof. Dr. Reinhard Rauch

Engler-Bunte-Institute, Fuel Technology Karlsruhe Institute of Technology Engler-Bunte-Ring 1, building. 40.51, Room305 D-76131 Karlsruhe

Tel.: +49 721 608-42960 Mobil: +49 174 9675356 Reinhard Rauch@kit edu http://ceb.ebi.kit.edu