

III III

Bio-Acetate production via dual fluidized bed syngas fermentation IEA Task 33 Workshop Gasification and Chemicals

🙀 🏠 The circular carbon bioeconomy based on biomass

- Gasification of lignocellulosic (waste) biomass
 - Dual fluidized bed (DFB) gasification to produce product gas/syngas
- Gas fermentation to produce chemicals & fuels
 - → Bubble column reactor with Thermoanaerobacter kivui to produce acetate (lactate*)

*currently investigated

Proof of concept: coupling "real" DFB product gas with gas fermentation to produce acetate

- Characterize *T. kivui* physiology/metabolism
- (Re)adaptation of *T. kivui* to CO
- Show acetate production with synthetic gas and parameter testing
- Show resilience to product gas impurities and integration possibilities

Steiner et al. 2024, in preparation

- 100 kW_{th} advanced DFB pilot plant at TU Wien
- Two inter-connected fluidized beds
- Bed material circulation provides heat
- Nearly N₂-free product gas (PG)
- Advanced design for enhanced gas-solid contact & soft bed materials

coarse

seconda

Absorption & condensation of

- Tar compounds
- Water-soluble substances (NH₃, HCI,...)

Adsorption of

oxide

Activated carbon beds & zinc oxide

- Hydrocarbons & tar compounds (BTX, naphthalene)
- Sulfur compounds

- "Emerging" technology
- Mass transfer critical for an economic operation of gas fermentation
- Anaerobic bacteria (acetogenes) suitable for syngas fermentation
- Robust biocatalysts with high tolerance
- High carbon and energy efficiency

- *T. kivui* is a thermophilic acetogenic bacteria
 - → growth at ~70°C
 - \rightarrow low cooling costs
 - \rightarrow high growth rates

20 liter bubble column gas fermentation reactor at TU Wien

Thermoanaerobacter kivui

- Thermophilic acetogen (T_{opt}= 66 °C)
- Fast growth on H₂/CO₂ ^[1]
- Sole CO utilization as carbon and energy source after adaptation ^[2]
- CO energetically more favorable than CO₂
- Syngas: co-utilization of CO₂, H₂ and CO
- Mineral medium without yeast extract or vitamins ^[1]
- Wood-Ljungdahl pathway

 $4 H_2 + 2 CO_2 \rightarrow CH_3COOH + 2 H_2O$

```
4 CO + 2 H_2O \rightarrow CH_3COOH + 2 CO_2
```


Modified from: Müller, 2019, Trends in Biotechnology, https://doi.org/10.1016/j.tibtech.2019.05.008

 \rightarrow Coupling with "real" product gas \rightarrow proof of concept

Bottled gas + Serum bottle

4

 \rightarrow Impurity tests

 \rightarrow Acetate production \rightarrow Parameter testing

Bottled gas + continuous culture

Bottled gas + Serum bottle

 \rightarrow Adaptation

 \rightarrow Fundamental survival

$\begin{array}{c} \rightarrow \text{ Quick adaptation:} \\ \text{from } H_2/CO_2 \text{ to } 100\% \text{ CO} \end{array}$

in ~31 generations

→ Fast growth on CO: growth rates of 0.20-0.25 h⁻¹ of *T. kivui* CO-1

adaptable to various syngas compositions

52% CO Syngas

Adaptation of *T. kivui* to CO utilization

- 4x 200 mL parallel bioreactor system (DASBOX, Eppendorf)
- Continuous gas and liquid feeding (gas at 0.0633 vvm)
- Syngas composition: CO:H₂:CO₂ 52:24:21
- Dilution rate: 0.075 h⁻¹
- T = 66°C
- pH = 6.4

- 4x 200 mL parallel bioreactor system (DASBOX, Eppendorf)
- Continuous gas and liquid feeding (gas at 0.0633 vvm)
- Syngas composition: CO:H₂:CO₂ 52:24:21
- Dilution rate: 0.075 h⁻¹
- T = 66°C
- pH = 6.4
- 818 h of continuous growth and acetate production
- Growth rate: 0.0766 h⁻¹
- Acetate productivity: 0.9527 g/l/h

Coupling with real DFB product gas

- Gasification of softwood pellets (~48 h)
- 25 h of coupled syngas fermentation
 - → Bacteria growth rate: 0.102 h⁻¹ (at 0.075 vvm)
 - → Acetate productivity: 0.083 g/l/h (at 0.075 vvm)
- Survival of bacteria (low enough oxygen contamination)
- Successful acetate production
- Productivity limited due to mass transfer limitations (k_La value) of bubble column reactor

Could we use product gas downstream the biodiesel scrubber without activated carbon?

Impurity	Concentration
Benzene	4000 ppm
Toluene	4000 ppm
H ₂ S	25 ppm

Typical impurities downstream of the biodiesel scrubber 0,30 -0,25 -(-) 0,20 0000 0,15

15

\rightarrow Use of product gas after RME scrubber conceivable

Typical impurities downstream of the biodiesel scrubber

Could we use product gas downstream the biodiesel scrubber without activated carbon?

Impurity	Concentration
Benzene	4000 ppm
Toluene	4000 ppm
H ₂ S	25 ppm

Testing of impurities

0,20

Steiner et al. 2024, in preparation

Integration possibility using scrubber water phase

Could we use product gas downstream the biodiesel scrubber without activated carbon?

Typical impurities downstream of the biodiesel scrubber

Impurity	Concentration
Benzene	4000 ppm
Toluene	4000 ppm
H_2S	25 ppm
Condensate*	unknown

*From phase separator; Contains NH₃, Phenol, Cyanate, Cyanide...

\rightarrow Use of water phase from biodiesel scrubber conceivable

Already tested and published for yeast production as well: https://doi.org/10.3389/fbioe.2023.1179269

Biotechnology

Dr. Stefan Pflügl Dr. Rémi Hocq Josef Horvath Julia Reichebner Maja Stumptner Marlies Müller Angeliki Sitara Klara Wögerbauer Renaud Eynard Dr. Eugenio Pettinato

Funding

Christian Doppler Forschungsgesellschaft

CIRCe°

Lena Steiner Dr. Florian Benedikt Dr. Alexander Bartik

Hans Zeitlhofer Dr. Josef Fuchs Tom Popov Veronica Gubin David Kadlez Ferdinand Thelen

CIRCe

Fuel and Energy System Engineering

Christian Doppler Forschungsgesellschaft