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= Part of the TUM School of Engineering and Design
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Motivation and context - transition towards RE
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Where will our (primary) energy come from in the future — potentials! - WOrId I! i =
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= Nuclear: not discussed as a potential future energy source here!

= Geothermal: very interesting, but mainly for heat sector, limited
regional potential (Germany), not discussed in detail here!

= QOcean and Wave: limited potential for Germany!

= Hydro: limited potential in Germany!

- Main primary energy sources for Germany in the future:
Solar, ... Wind and ... Biomass/Waste
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Motivation and context - carbon recycling / circular economy

Why is carbon recovery crucial?

5 Decarbonization vs. defossilization Glo!JaI Carbon Demand for C_hemlcals and Derived Materials
in 2020 and Scenario for 2050 (in million tonnes of embedded carbon)
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available at www.renewable-carbon.eu/graphics © ﬁ-lnslitute.eu | 2021

Recycling of carbon from unavoidable wastes crucial

» Biomass (and CC) most important sustainable carbon sources
» Gasification of waste streams as key technology in a future
circular economy - Carbon recovery from difficult feedstock

-10%
losses in
collection
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Overview of gasification research projects over the last years

Chronological overview of relevant gasification projects

2025 | 2026 | 2027
VEREN,
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Focus areas in EF gasification: burghausen

Sustainable Glass Industry

= Use of low-grade/waste feedstock e.g. phytoremediation or sewage sludge utilization (GOLD, VERENA and PyroGas)

= Coupling of biological and thermochemical processes to make use of synergies (ReGasFerm and GOLD)

= Power integration e.g. via plasma integration for either product enhancement and/or increase of yield and/or enabling
very difficult feedstock to be used (Reallabor, GIFFT and REDEFINE) and/or hydrogen (VERENA)
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Gasification research approach at TUM/CES

From basic understanding to applied research

Entrained flow gasification (EFG)
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Combination of modeling and experimental investigation

EF gasification research needs both modeling and experimental investigations ﬂ Product

Model validation l
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Overview of EF-based Biomass/Waste-to-X process options

Renewable fuels and chemicals from biomass via entrained flow gasification (EFG)
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Comparison of the energy efficiency and energy yield (A) and CO, emissions and carbon conversion efficiency for BtX routes
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Enhanced BtX processes

Electrification and integration of hydrogen in BtX processes
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Review Paper

Electrification of gasification-based biomass-to-X processes — a critical review and in-depth assessment

M. Dossow, D. Klueh, K. Umeki, M. Gaderer, H. Spliethoff, S. Fendt

= Electrification of Biomass-to-X (BtX) processes as a technological option to enhance chemical
and fuel production from biomass to overcome carbon limitation in BtX

= Electrification options classified into indirect electrification (addition of H2 from water electrolysis,
Power-and-Biomass-to-X, PBtX), and direct electrification (eBtX)

= H, addition in PBtX is state-of-the art showing
increased carbon efficiency and product yield

= Studies on direct electrification (eBtX) are
limited in the literature due to low
technological maturity

Indirect electrification (PBtX)
H, i+ co)

0¥
I
(L

b

-

Pretreatment  Gasification Syngas Synthesis Products

conditioning
- Methanol
FT products

nd use
GHG emissions Economy of scale
Water use Plant

Resources

Electricity .-‘-}—"'

location

Energy and Environmental Science, 2023,
17(3), pp. 925-973
https://doi.org/10.1039/D3EE02876C

Sustainability "5 e
environmental | e

Direct electrification (eBtX)
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Electrification of gasification-based BtX processes

Overview of options and wording

. Indirect electrification (PBtX) Indirect electrification (PBtX)
r‘ H, = H, and O, from electrolysis (water
0, electrolysis or co-electrolysis)

= rWGS for CO,-to-CO conversion
= BtX and PtX (power-to-X) hybrid

A

b4 Pretreatment Gasification Syngas Synthesis Products _ - .
@ 11 conditioning Direct electrification (eBtX)
o . o
=N > " — ) —) =) Electricity dn_ven heat supply or
g1 = % = s co-electrolysis
* 5 = Reduction of CO, formation
= «“ = Improved reaction kinetics or

energy efficiency

Direct electrification (eBtX)

M. Dossow et al. (2023) https://doi.org/10.1039/D3EE02876C
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Electrification of gasification-based BtX processes

Indirect electrification - PBtX (Power- and Biomass-to-X)

Water
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= Utilization of H, and O, from
electrolysis (water electrolysis or co-
electrolysis)

= rWGS for CO,-to-CO conversion

\ 4

M. Dossow et al. (2023) https://doi.org/10.1039/D3EE02876C
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Electrification of gasification-based BtX processes

Indirect electrification - PBtX (Power- and Biomass-to-X)
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= Percentage of carbon atoms
converted from biomass to final
product

= 30-40% for conventional BtX

» Meta-analysis shows potential of
close to 100% at 50-50 energy input
from electricity and biomass

Increased product yield
= Limited by carbon efficiency in
conventional BtX

1.0
ER in MWEU"MWH-

3.0 = 2X to 4x higher yields with

electrification

-> Synergies in electrification: PBtX advantageous over PtX and BtX
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Electrification of gasification-based BtX processes

Direct electrification - eBtX

Syngas Conditioning with

in-line co-electrolysis

Pretreatment Gasification Synthesis
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Products
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Microwave heating Electric resistance heating m Inductive heating Non-thermal plasma Thermal plasma

Direct electrification (eBtX)

= Electricity-driven heat supply or
co-electrolysis

» Reduction of CO2 formation

¥

Improved reaction kinetics or
energy efficiency

\ 4

eBtX potentially advantageous
compared to PBtX

M. Dossow et al. (2023) https://doi.org/10.1039/D3EE02876C
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Electrification of gasification-based BtX processes

Direct electrification — eBtX = Options for e-Gasification
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Fig. 8 Simplified schematics of different options and technologies to electrically heat gasification depending on gasifier reactor type and point of

electrical heating. For fixed bed gasification a downdraft gasifier setup is shown exemplarily. Carrier gas, and auxiliaries are not included for simplicity. M. Dossow et al (2023) httDS'//dOi OfQ/lO 1039/D3EE02876C
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Electrification of gasification-based BtX processes

GHG emissions

China Japan ~ USA/Germany PtX UK  Brazl Canada Norway

Product-specific GHG emissions for P-
/eBtX processes for 90% carbon efficiency
depending on grid electricity factor
compared to Biomass-to-X (BtX), Power-
to-X (PtX) and fossil alternatives.
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M. Dossow et al. (2023) https://doi.org/10.1039/D3EE02876C

IEA Task 33 Workshop | Karlsruhe | Dr.-Ing. Sebastian Fendt | TUM | 2024-06-12 20


https://doi.org/10.1039/D3EE02876C

>3 T

Specific PBtL Study for advanced SAF production

Improving carbon efficiency for an advanced BtL process using H, & O, from electrolysis

M. Dossow, V. Dieterich, A. Hanel, S. Fendt, H. Spliethoff

= Detailed process modeling shows huge potential of BtL and PtL combination.

= Fuel yield is more than doubled at 97% carbon efficiency adding H, to BtL process.

» Required electrolyzer sizes are about 60%—-160% of the biomass input.

= Use of electrolysis O, within the process offers advantage over PtL process routes.

= Novel process offers high potential to defossilize transportation, e.g., aviation.

e
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Combining a BtL process with PtL - PBtL

Results: Carbon and energy flow - Sankey diagrams

Light ends - Liquid % Pretreatment
Pretreatment FTrecycle  hydrocarbons

I . . Biomass 7
/ \ Gasification r
Gasification [ Co, nl Syngas - Fischer-
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mm Syngas
] CO2

Lightends

Acid gas
rWGS removal

61.4% 41.0%

Electricity Proton-exchange \

membrane electrolysis

mm Syncrude

» Share of carbon recovered in the product can be enhanced from about 40% to up to 97%
= Electricity for the water electrolysis needs to come from renewables, otherwise the carbon footprint might very well be

worse than fossil alternatives
= Use of electrolysis O, within the process offers advantage over PtL process routes.
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Improving carbon efficiency for an advanced BtSAF process

Most important results/findings
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Process can be net water neutral!
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Improving carbon efficiency for an advanced BtSAF process

Most important results/findings

J Carbon efficiency 97%
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I Air separation 79%
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Total electricity required
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SOEL reduced size by about 20%
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TUTI
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Conclusion

And outlook

» Renewable electricity (wind and solar) will become the largest energy
vector on the way towards a net-zero emission energy system

» Carbon will be a valuable resource we need to be very careful about. We
need to make the most out of any sustainable/renewable carbon source!

= Holistic view on sustainability will increase additional concerns and
challenges we need to face today, e.g. water balance, social acceptance
and other aspects

-> Electrification of chemical processes, especially BtX

v' Special focus on: Plasma-assisted gasification as a very promising
option with a lot of potential but also many challenges to be solved by
fundamental and applied research!
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Current plasma gasification research: Experiments and simulations

Experiments Simulations

Reactor design,

sensitivity analysis Process simulations

» Setting reasonable operating parameter
» Basic dimensioning

CFD simulations

> Fuel particle conversion behavior
Reactor design

Optimization of operating conditions
Plasma-torch design

» Fundamental
understanding
of the Process

YV V V

» Industrial
scale-up

Goal:
Plasma gasification model containing all
iImportant phenomena occurring under
Model parameter industrial scale conditions for scale-up
applications

» Plasma gasification process Validation data
» Plasmatorch design
IEA Task 33 Workshop | Karlsruhe | Dr.-Ing. Sebastian Fendt | TUM | 2024-06-12 27
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Invitation \

Munich Hydrogen Symposium 21.10.-23.10.2024 . : ‘
Munich Hydrogen Symposium 2

Monday, October 21st Tuesday, October 22nd Wednesday, October 237 Thursday, October 23
Keynote 3: Circular Economy
o ion W. 2A Session W. 2B
09:00 - 10:30 ) - p | Topic: H2 Utilization
Session T. 1A Topic: System Studies in Biotechnology
Topic: Circular Economy Munich Hydrogen Symposium 2024
10:30 - 11:00 Coffee break

Opening Session Keynote 4: H2 Production

11:00 - 12:30 Keynote 1: System Studies Seailem 11 245

Keynote 2: H, Utilization Topic: Power-to-X Sessionw.1a | SessionW.28 s
Toorre S ST Topic: Reactor A7
opie- System Studies Concepts TechnicalTours: | . .. W ersss
12:30 — 13:30 Lunch break + ChembDelta Burghausen
Panel Discussion ° UL (G s €ERai
Politics: tha q A
. . . Session T. 3A Session W. 3A
13:30 - 15:00 TR (o (RELT e Zf.rmbusch QHecken) Topic: H2-Production Topic: Entrained Flow Gasification
Research: tha
Representative: tha
15:00 - 15:30 Coffee break
. Session W. 4A
16:30 - 17:00 SN UL R Poster Session Topic: Plasma Utilization

Topic: System Studies

Closing Session & Award

Conference Dinner

= Abract submission still open!

= Focus session(s) on gasifcation and power integration
= Chemical industry participation

= Special Issue paper publication
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Thanks for the attention!!!

Looking forward to the discussion!

Thanks to my group at the Chair of Energy Systems

.. and thanks for the funding:

and Research

' Federal Ministry -
®» ‘ of Education "’ reallabor RNE,P,EEIINEwHZE

burghausen www.redefine-h2e.de B e
LABS
: Federal Ministry % Federal Ministry
Sebastian Fendt % for Economic Affairs of Food
sebastian.fendt@tum.de : Horlzon 2020 and Climate Action and Agriculture
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