### Making small scale mencal production

**Start presentation** 

4



-

# Agenda



- 1. TNO and fuel development
- 2. Setting the scene
- 3. Explaining indirect gasification
- 4. Quick scan on the economics
- 5. Future outlook for MeOH production
- 6. Conclusions



#### **TNO and fuel development**





#### **Setting the scene**



FB techn + oxygen Large EF + torrefaction Large Indirect approach Medium

Enerkem (2x) – Canada stopped + under construction Fulcrum – USA stopped KEW – UK operation GoBiGas – Sweden stopped Enerkem – Spain announced Gidara – Netherlands RWE – Netherlands Salamandre – France BioTFuel – France ABSL - UK



#### **Three approaches towards gasification for fuel production**



#### Entrained flow gasification

Entrained flow gasification is characterized by high temperatures, small particles and oxygen usage, aiming to produce syngas.

- RWE Furec
- **BioTFuel** •
- SkyFuelH<sub>2</sub>
- Torrgas (not an exact fit)



#### **Direct** gasification

Direct gasification is characterized by fuel flexible, limited in scale, typical fluidized bed technology and oxygen usage, aiming to produce syngas.

- Enerkem
- Gidara
- ABSL Swindon
- KEW



#### Indirect gasification

Indirect gasification is characterized by fuel flexible, semi-limited in scale, typical fluidized bed technology and **no** oxygen usage, aiming towards SNG production.

- Engie Salamandre
- GoBiGas
- TNO  $\rightarrow$  MILENA

Most direct approaches lead to syngas, subsequently used for H<sub>2</sub>, MeOH or SAF production

Indirect approaches, focussed on CH<sub>4</sub> production



## Syngas production is done in high temperature gasifiers!

Can an indirect gasifier be used for syngas production and if so, what would be the best approach?





### **Explaining gasification**

Partial combustion of a feedstock, with the goal to generate heat that converts the remaining feedstock into gas.

Divisions can be made on:

*Low – Medium – High temperature* 

 $\rightarrow$  Temperature has a strong effect on the composition of the gas.

Fixed bed – Fluid Bed –Entrained flow

 $\rightarrow$  Determines to a large extend how the technology will be designed.

Direct vs. Indirect

 $\rightarrow$  Heat transfer is done direct via combustion or transferred indirect (heat pipes or bed material). This has a strong effect on the quality of the gas.



## Applications based on gasification

- Heat and Power (CHP)
- Green Gas (SNG/RNG)
- Chemicals (overlaps with fuels)
- Liquid fuels (MeOH, DME, LPG, FT)
- Hydrogen (with CCS)

Large amount of different applications, since the technology utilizes a syngas intermediate.

Even more technology options for the gasification itself





#### **Direct vs. Indirect gasification**





### **Indirect gasifier - MILENA**





### Indirect gasifier - MILENA

| Characteristic         | Description                          |
|------------------------|--------------------------------------|
| Feedstock flow         | 6 kg/h max                           |
| Feedstock type (range) | biomass – RDF – plastic waste        |
| Supply gases           | $N_2$ , CO <sub>2</sub> , Air, Steam |
| Trace gases            | Argon and Neon                       |
| Heating                | Externally traced up to 900°C        |
| Operating T            | 550 – 850 °C                         |
| Operating P            | Atmospheric                          |
| Analysis               | Product and flue gas                 |





## Features of indirect gasification

- + Complete feedstock conversion
- + High feedstock flexibility
- + Lower temperature levels in comparison to other syngas platforms
- + No oxygen required
- + Scalable, but economically interesting starting at small capacity (50 ktpa input)
- ? Not a direct route to syngas





#### **Quick scan on the economics**

- Biomass is extremely heterogeneous, scattered and has a different cost price compared to fossil → Scale will be limited
- Comparison of two pathways based on indirect gasification
- Based on first reasonable scale of 30 MWth input (~ 50 kton/y demolition wood feedstock)





#### **Two processes modelled in ASPEN**



#### **Results of a TEA between the two systems**





| Route 1 MILENA SMR  | Route 2 MILENA Thermal cracker                                                               |
|---------------------|----------------------------------------------------------------------------------------------|
| CAPEX 55 M€         | CAPEX 63 M€                                                                                  |
| Fuel efficiency 62% | Fuel efficiency 57.5%                                                                        |
| LCOF ~34 €/GJ       | LCOF ~51 €/GJ                                                                                |
|                     | CAPEX higher due to ASU and syngas compressor<br>OPEX higher due to larger power consumption |

#### **Comparison with other studies / fossil MeOH**



- a. Biomass in base case is 30% of the overall LCOF, with a reduction of feedstock price this will reduce significantly the LCOF.
- b. The difference in CAPEX and efficiency translate to a big gap in LCOF for route 1 and 2.
- c. Study of Poluzzi includes direct (32,6 €/GJ) and indirect (34,2 €/GJ) gasification but both using and ASU to produce O<sub>2</sub>. Both also at very large scale (300ktpa)



#### **Quick scan results**

- Two indirect pathways compared
- Distinct differences in CAPEX for both routes
- Distinct differences in overall efficiency
- Feedstock prices becomes more dominant when overall CAPEX is lower

The low temperature pathways to syngas (OLGA SMR) is looking more attractive from an efficiency and OPEX/CAPEX point of view

Image of a MeOH flame ;-)





#### **Future outlook for MeOH production**

- Focus on the processing steps after MILENA to generate the proper syngas quality for MeOH synthesis
- Develop a process design package
- Supporting LCA and TEA to identify weaknesses in the line-up
- Partnering to engage in a FEED study



#### Conclusions

- TNO has several technology under development for the production of advanced fuels and/or developments that aid in the line up towards advanced biofuels
- Indirect gasification is a feedstock flexible, small to medium scale attractive pathway to produce advanced biofuels
- TNO is looking for partnership to:
  - Help develop your specific pathway by providing access to state of the art lab facilities.
  - Co-develop indirect gasification based value chains toward MeOH (DME, FT, H<sub>2</sub> etc not excluded)
  - Co-develop the back-end solutions for synthesis of biofuels taking into account the limited availability of feedstock and hence smaller scale compared to fossil routes.





# Thank you for your attention



Westerduinweg 3, 1755 LE, Petten



Berend.Vreugdenhil@tno.nl



000000