## SYNOVA

Integrating waste cracking with existing petrochemical industry: the fate of contaminants

> June 12<sup>th</sup> 2024 Robin Zwart



#### WHO WE ARE

A strong team providing defossilisation solutions





Technology and solutions development and commercialization

Owns the IP



Research and development and feedstock testing

#### WHAT WE DO

Developing and licensing chemical recycling solutions that convert waste to high-value chemicals



Developing and licensing renewable fuels solutions that convert biomass to renewable fuels



SMOVA Technologies

SYNOVA Technologies

SYNOVA renewable carbon gas

SYNOVA renewable

gas

carbon

Partner Technologies

Partner Technologies

Plastic Monomers Olefins + BTX + Styrene

Renewable Fuels Biomethane, SAF, Methanol



#### **OUR TECHNOLOGIES**

Continues, scalable, and robust, developed over past decennium to a TRL-level ready for commercial demonstration



MILENA solids cracker / gasifier

- MILENA technology based on FCC technology coupled fluidized beds
- Heat transfer via circulating sand, no catalyst
- Operating at ~750°C (depending on application and feedstock)
- No external fuels required (coke and heavies removed in OLGA or non condensable gas are combusted to provide the energy for cracking)

#### OLGA tar removal

- OLGA technology based on Coke Oven Gas cleaning: gas/liquid contactors and Electrostatic Precipitator (ESP)
- Removes 99.9% of Poly Aromatic Hydrocarbons (heavies) and particles

#### **MEDIUM TEMPERATURE = INSTANT CHEMICALS**

Not too hot and not too cold, but just right...



5 SYNOVA

#### **OUR SOLUTIONS**

Combining MILENA/OLGA with leading partner technologies

| Application                          | Integration Options                          | Technology Partner   | Announced Commercial<br>Demonstration Partner |
|--------------------------------------|----------------------------------------------|----------------------|-----------------------------------------------|
| Plastic-rich Waste to<br>Olefins     | Downstream of steam cracker<br>furnace       | Technip<br>Energies  | SABIC                                         |
| Plastic-rich Waste<br>to BTX         | Refinery or stand-alone                      | KOCH<br>KOCH<br>KOCH | Tba.                                          |
| Polystyrene-rich<br>Waste to Styrene | Existing Polystyrene plant<br>or stand-alone | Trinseo TRINSEO      | Trinseo Trinseo                               |





- Only one conversion step
- Integration with existing steam crackers by-passing the cracker furnace

**PROCESS FROM WASTE TO OLEFINS** 

- Possible with liquid <u>and</u> gas crackers
- Contaminants removed from the gas by Pure.rGas<sup>™</sup>





#### **PROCESS FROM WASTE TO OLEFINS**

#### General scheme of Pure.rGas<sup>TM</sup>



Reference: Veronique Reich, Yvon Simon and Walkiria Braga; Process for treating a gas stream from plastic pyrolysis and/or biomass pyrolysis and installation for integration into a steam cracker; US 2022/0402840 (2022)

## CONVENTIONAL FCC OFF GAS

Typical impurities & their effect

| Impurity         | Effect                                                     |
|------------------|------------------------------------------------------------|
| H <sub>2</sub> S | Catalyst poison                                            |
| COS              | Impacts on C3 <sup>=</sup> product spec                    |
| RSH              | Impacts on C2 <sup>=</sup> /C3 <sup>=</sup> product spec   |
| Acetylene        | Impacts on C2=/C3= product spec                            |
| Oxygen           | Impacts on C2=/C3= product spec                            |
| Chlorides        | Corrosive to aluminum                                      |
| Ammonia          | Potential reactant to form NH <sub>4</sub> NO <sub>3</sub> |
| Nitric oxides    | Can react to form explosive nitroso gums                   |
| Mercury          | Attacks aluminum in cold section                           |
| Arsine           | Impacts on C3 <sup>=</sup> product spec                    |
| HCN              | Impacts on C2 <sup>=</sup> /C3 <sup>=</sup> product spec   |
| H <sub>2</sub> O | Freezes in cold section                                    |

Reference: Gerard B Hawkins, FCC off gas treatment, GBH Enterprises, Ltd (2013)



## CONVENTIONAL FCC OFF GAS

Typical impurities & their removal

| Impurity         | Removal                                              |
|------------------|------------------------------------------------------|
| H <sub>2</sub> S | Amine/caustic wash + absorbent guard bed             |
| COS              | Hydrolysis or solid bed absorption                   |
| RSH              | Caustic and/or solid bed absorption                  |
| Acetylene        | Hydrogenation to ethylene across catalyst            |
| Oxygen           | Hydrogenation to water across catalyst               |
| Chlorides        | Solid bed absorbent                                  |
| Ammonia          |                                                      |
| Nitric oxides    | Hydrogenation to NH <sub>3</sub> across catalyst     |
| Mercury          | Solid bed absorbent                                  |
| Arsine           | Solid bed absorbent                                  |
| HCN              | Solid bed absorbent or hydrogenation across catalyst |
| H <sub>2</sub> O | Regenerable mol sieve                                |



#### **CONTAMINANT TESTING**

#### MILENA-OLGA operated on industrial sourced DKR-350

Industrial MILENA handles the original shredded waste, fuel pretreatment with pelletization and milling is needed only as of size of the PDU



#### **CONTAMINANT TESTING**

#### MILENA-OLGA operated on industrial sourced DKR-350

Industrial MILENA handles the original shredded waste, fuel pretreatment with pelletization and milling is needed only as of size of the PDU



#### **CONTAMINANT TESTING**

Contaminant testing primarily focusing on product gas



### MILENA-OLGA PRODUCT GAS

Additional concerns raised as of differences in feedstock

| Impurity                                         | Effect                                                     |  |
|--------------------------------------------------|------------------------------------------------------------|--|
| $H_2$ , CO, CO <sub>2</sub> and $H_2O$           | Disturbance of SCU as of high quantities                   |  |
| Aromatic hydrocarbons (tars)                     | Promote fouling and pollute pygas product                  |  |
| H <sub>2</sub> S, COS, mercaptans and thiophenes | Pollute final products and/or hydrogenation catalyst       |  |
| NH <sub>3</sub> and HCN                          | Pollute ethylene product and impact catalyst               |  |
| HCl, Cl <sub>2</sub> and organic chlorides       | Corrosion risk, catalyst poison and pollute final products |  |
| Acetates and aldehydes                           | Promote fouling and poison catalysts                       |  |
| Acids (including fatty)                          | Promote fouling and poison catalysts                       |  |
| Alcohols, diols and ketones                      | Promote fouling and poison catalysts                       |  |
| Dioxins and PFAS                                 | Contaminate product and form environmental problem         |  |
| Esters and ethers                                | Promote fouling and poison catalysts                       |  |
| Silicones                                        | Permanent poison of catalyst and pollute pygas product     |  |
| Oxygen and nitric oxides                         | Safety issue related to explosion risk                     |  |



## MILENA-OLGA PRODUCT GAS

Analysed levels for different contaminant & laboratories included

| Impurity                                         | Levels             | Laboratories                   |  |
|--------------------------------------------------|--------------------|--------------------------------|--|
| $H_2$ , CO, CO <sub>2</sub> and $H_2$ O          | vol.%              | <b>The</b> innovation for life |  |
| Aromatic hydrocarbons (tars)                     | mg/Nm <sup>3</sup> |                                |  |
| H <sub>2</sub> S, COS, mercaptans and thiophenes | ppmv               | ساىك                           |  |
| NH <sub>3</sub> and HCN                          | ppmv               | éalaia                         |  |
| HCl, Cl <sub>2</sub> and organic chlorides       | ppmv               |                                |  |
| Acetates and aldehydes                           | ppmv               | intertek                       |  |
| Acids (including fatty)                          | ppmv               | Total Quality. Assured.        |  |
| Alcohols, diols and ketones                      | ppmv               | CCC                            |  |
| Dioxins and PFAS                                 | ng/Nm³             | <u> 343</u>                    |  |
| Esters and ethers                                | ppmv               | WAU VER                        |  |
| Silicones                                        | ppmv               |                                |  |
| Oxygen and nitric oxides                         | ppmv and ppbv      | 1828                           |  |

#### CONCLUSIONS

- Contaminant testing was done with the PDU at TNO on two DKR-350 waste streams in two times three days with operation in daytime.
- Steady state conditions in terms of flow, temperature and product gas composition could be established for all three days and were also comparable with one another.
- For the analyses of 200<sup>+</sup> contaminants, not only available analytical capabilities of TNO were applied, but also those of the external laboratories of SABIC, Intertek, SGS and Bureau Veritas.
- Measured levels for contaminants have been used in validating OLGA and Pure.rGas<sup>™</sup> abilities to remove contaminants to within the required specifications for steam cracker integration.



## Thank you!

robin.zwart@synovatech.com

# SYNOVA

www.synovatech.com